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Abstract

This short note summarizes the geometry lemmas appearing in [2].1

Some Results Involving Set Distances

For the purpose of this note and for simplicity, we consider only closed subsets of metric spaces in the
following lemmas, although all these results can potentially be generalized for subsets that are open or/and
closed in the metric space.

Definition 1. Given closed subsets, A,B, of a metric space, (Ψ, d), we define

1. Separation between the sets:
sep(A,B) = min

a∈A,
b∈B

d(a, b)

2. Hausdorff distance between the sets:

dH(A,B) = max

(
max
a∈A

min
b∈B

d(a, b) , max
b∈B

min
a∈A

d(a, b)

)
3. Diameter of a set:

diam(A) = max
a∈A,
a′∈A

d(a, a′)

Lemma 1. If (Ψ, d) is a metric space, then for any closed subsets, P,Q,R ⊆ Ψ,

sep(P,Q) ≤ sep(P,R) + sep(R,Q) + diam(R) (1)

Proof. Let (p∗, r1) ∈ argmin p∈P,
r∈R

d(p, r) (that is, p∗ ∈ P, r1 ∈ R are a pair of points such that

d(p∗, r1) = min p∈P,
r∈R

d(p, r) = sep(P,R)). Likewise, let (q∗, r2) ∈ argmin q∈Q,
r∈R

d(q, r) (that is, d(q∗, r2) =

sep(R,Q)). Then,

sep(P,Q) ≤ d(p∗, q∗) (since sep(P,Q) = min
p∈P,
q∈Q

d(p, q))
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≤ d(p∗, r1) + d(r1, q
∗) (triangle inequality.)

= sep(P,R) + d(r1, q
∗)

≤ sep(P,R) + d(r1, r2) + d(q∗, r2) (triangle inequality.)

= sep(P,R) + sep(R,Q) + d(r1, r2)

≤ sep(P,R) + sep(R,Q) + diam(R) (2)

Lemma 2. If (Ψ, d) is a connected path metric space, then for any closed subsets, P,Q, Q̃ ⊆ Ψ,

sep(P,Q) ≤ sep(P, Q̃) + dH(Q̃,Q) (3)

Proof.

Let (p0, q
∗) ∈ argmin p∈P,

q∈Q
d(p, q) (that is, p0 ∈

P, q∗ ∈ Q are a pair of points such that d(p0, q
∗) =

min p∈P,
q∈Q

d(p, q)).

Likewise, let (p1, q̃
∗) ∈ argmin p∈P,

q′∈Q̃
d(p, q′).

Furthermore, let q̃† ∈ argmin
q′∈Q̃ d(q∗, q′) and q† ∈

argminq∈Q d(q, q̃∗). P

Q

Q~

p0
p1

q*

q†

q*~

~

q†γ(u)

μ(u)

Consider a shortest path, γ : [0, 1] → Ψ, connecting q∗ and q̃†, and parameterized by the normalized
distance from q∗, so that γ(0) = q∗, γ(1) = q̃† and

d(q∗, γ(u)) = u d(q∗, q̃†) (4)

Likewise, µ : [0, 1] → Ψ be the shortest path connecting q† and q̃∗, nd parameterized by the normal-
ized distance from q†, so that µ(0) = q†, µ(1) = q̃∗ and d(q†, µ(u)) = u d(q†, q̃∗). Consequently, since
µ(u) is a point on the shortest path connecting q† and q̃∗, we have

d(µ(u), q̃∗) = d(q†, q̃∗)− d(q†, µ(u)) = (1− u) d(q†, q̃∗) (5)

Define f : [0, 1] → R as f(t) = d(p0, γ(t)), and g : [0, 1] → R as g(t) = d(p1, µ(t)). It’s easy to
note that both f and g are continuous.

As a consequence, we have the following

f(0) = d(p0, q
∗) = min

p∈P,
q∈Q

d(p, q) ≤ d(p1, q
†) = g(0)

g(1) = d(p1, q̃
∗) = min

p∈P,

q′∈Q̃

d(p, q′) ≤ d(p0, q̃
†) = f(1)

Thus, by intermediate value theorem, there exists a u ∈ [0, 1] such that f(u) = g(u). That is,

d(p0, γ(u)) = d(p1, µ(u)), for some u ∈ [0, 1]. (6)

2



Using this we have,

min
p∈P,
q∈Q

d(p, q) = d(p0, q
∗)

≤ d(p0, γ(u)) + d(q∗, γ(u)) (triangle inequality.)

= d(p1, µ(u)) + d(q∗, γ(u)) (using (6).)

≤ d(p1, q̃
∗) + d(µ(u), q̃∗) + d(q∗, γ(u)) (triangle inequality.)

= min
p∈P,

q′∈Q̃

d(p, q′) + d(µ(u), q̃∗) + d(q∗, γ(u))

= min
p∈P,

q′∈Q̃

d(p, q′) + (1− u) d(q†, q̃∗) + u d(q∗, q̃†) (using (4) and (5).)

≤ min
p∈P,

q′∈Q̃

d(p, q′) + max
(
d(q†, q̃∗) , d(q∗, q̃†)

)

= min
p∈P,

q′∈Q̃

d(p, q′) + max

(
min
q∈Q

d(q, q̃∗) , min
q′∈Q̃

d(q∗, q′)

)
(definitions of q† and q̃†.)

≤ min
p∈P,

q′∈Q̃

d(p, q′) + max

(
max
q′∈Q̃

min
q∈Q

d(q, q′) , max
q∈Q

min
q′∈Q̃

d(q, q′)

)
= sep(P, Q̃) + dH(Q̃,Q)

Lemma 3. Suppose P,Q, R̃ are closed subsets of a metric space, (Ψ, d), such that

max
r′∈R̃

min
s∈P∪Q

d(s, r′) + dH(P ∪Q, R̃) < sep(P,Q) (7)

Define, P̃ , Q̃ ⊆ R̃, such that

P̃ = {r′ ∈ R̃ | min
s∈P∪Q

d(s, r′) = min
p∈P

d(p, r′)}, and,

Q̃ = {r′ ∈ R̃ | min
s∈P∪Q

d(s, r′) = min
q∈Q

d(q, r′)} (8)
P

Q

R
P~ Q~

~

Then

1. {P̃ , Q̃} constitutes a partition of R̃,

2. argmins∈P∪Q d(s, p′) ⊆ P, ∀p′ ∈ P̃ , and, argmins∈P∪Q d(s, q′) ⊆ Q, ∀q′ ∈ Q̃.
(consequently, min

s∈P∪Q
d(s, p′) = min

s∈P
d(s, p′), ∀p′ ∈ P̃ , and, min

s∈P∪Q
d(s, q′) = min

s∈Q
d(s, q′), ∀q′ ∈ Q̃.)

3. argmin
r′∈R̃ d(p, r′) ⊆ P̃ , ∀p ∈ P , and, argmin

r′∈R̃ d(q, r′) ⊆ Q̃, ∀q ∈ Q.
(consequently, min

r′∈R̃
d(p, r′) = min

r′∈P̃
d(p, r′), ∀p ∈ P , and, min

r′∈R̃
d(q, r′) = min

r′∈Q̃
d(q, r′), ∀q ∈ Q.)

4. dH(P, P̃ ) ≤ dH(P ∪Q, R̃), dH(Q, Q̃) ≤ dH(P ∪Q, R̃),
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and, max
(
dH(P, P̃ ), dH(Q, Q̃)

)
= dH(P ∪Q, R̃).

5. If (Ψ, d) is a connected path metric space, then sep(P̃ , Q̃) ≥ sep(P,Q)− 2 dH(P ∪Q, R̃)

If the above holds, we say “R̃ is a separation-preserving perturbation of P and Q”, and call {P̃ , Q̃} to
be the “separation-preserving partition of R̃”.

Proof.

1. We first prove that {P̃ , Q̃} constitutes of a partition of R̃.

Proof for P̃ ∪ Q̃ = R̃: For a fixed r′ ∈ R̃, an element of argmins∈P∪Q d(s, r′) is either
in P or in Q. In the former case the point r′ will belong to P̃ , while in the later case it
will belong to Q̃ (with the possibility that it belongs to both) due to the definition (8).
Thus there does not exist a point r′ ∈ R̃ that does not belong to either P̃ or Q̃.
Proof for P̃ ∩ Q̃ = ∅: We prove this by contradiction. If possible, let ρ′ ∈ P̃ ∩ Q̃.
Since ρ′ ∈ P̃ , due to definition (8), there exists a p1 ∈ P such that mins∈P∪Q d(s, ρ′) =
d(p1, ρ

′). Likewise, there exists a q1 ∈ Q such that mins∈P∪Q d(s, ρ′) = d(q1, ρ
′).

Thus,

2 min
s∈P∪Q

d(s, ρ′) = d(p1, ρ
′) + d(q1, ρ

′)

≥ d(p1, q1) (tringle inequality.)
≥ min

p∈P,
q∈Q

d(p, q) (since p1 ∈ P, q1 ∈ Q.)

⇒ 2 max
r′∈R̃

min
s∈P∪Q

d(s, r′) ≥ min
p∈P,
q∈Q

d(p, q)

⇒ max
r′∈R̃

min
s∈P∪Q

d(s, r′) + dH(P ∪Q, R̃) ≥ sep(P,Q)

This contradicts the assumption (7) of the Lemma. Hence there cannot exist a ρ′ ∈ P̃∩Q̃.
Thus P̃ ∩ Q̃ = ∅.

2. We next prove argmins∈P∪Q d(s, p′) ⊆ P, ∀p′ ∈ P̃ . We do this by contradiction.

If possible, suppose there exists a p′ ∈ P̃ such that argmins∈P∪Q d(s, p′) 6⊆ P . Then there
exists a q ∈ Q such that mins∈P∪Q d(s, p′) = d(q, p′). But d(q, p′) ≥ mins∈Q d(s, p′) ≥
mins∈P∪Q d(s, p′). This implies mins∈P∪Q d(s, p′) = mins∈Q d(s, p′). Due to definition of Q̃
in (8) this implies p′ ∈ Q̃. However, we have already shown that P̃ ∩ Q̃ = ∅. This leads to a
contradiction. Thus argmins∈P∪Q d(s, p′) ⊆ P, ∀p′ ∈ P̃ .

Likewise we can prove argmins∈P∪Q d(s, q′) ⊆ Q, ∀q′ ∈ Q̃.

3. We next prove argmin
r′∈R̃ d(p, r′) ⊆ P̃ , ∀p ∈ P . We do this by contradiction.

If possible, suppose there exists a p3 ∈ P such that argmin
r′∈R̃ d(p3, r

′) 6⊆ P̃ . Then there exists a
ρ′ ∈ Q̃ such that min

r′∈R̃ d(p3, r
′) = d(p3, ρ

′).
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Again, due to the definition of Q̃ in (8), for any ρ′ ∈ Q̃ there exists a q3 ∈ Q such that d(q3, ρ
′) =

mins∈P∪Q d(s, ρ′).

Thus,

min
r′∈R̃

d(p3, r
′) + min

s∈P∪Q
d(s, ρ′) = d(p3, ρ

′) + d(q3, ρ
′)

≥ d(p3, q3) (tringle inequality.)
≥ min

p∈P,
q∈Q

d(p, q) (since p3 ∈ P, q3 ∈ Q.)

⇒ max
s∈P∪Q

min
r′∈R̃

d(s, r′) + max
r′∈R̃

min
s∈P∪Q

d(s, r′) ≥ min
p∈P,
q∈Q

d(p, q)

⇒ dH(P ∪Q, R̃) + max
r′∈R̃

min
s∈P∪Q

d(s, r′) ≥ sep(P,Q)

This contradicts the assumption (7) of the Lemma. Hence there cannot exist a p3 ∈ P such that
argmin

r′∈R̃ d(p3, r
′) 6⊆ P̃ . Thus argmin

r′∈R̃ d(p, r′) ⊆ P̃ , ∀p ∈ P .

Likewise we can prove argmin
r′∈R̃ d(q, r′) ⊆ Q̃, ∀q ∈ Q.

4. Since argmins∈P∪Q d(s, p′) ⊆ P, ∀p′ ∈ P̃ , we have mins∈P∪Q d(s, p′) = minp∈P d(p, p′), ∀p′ ∈
P̃ . Thus, max

p′∈P̃ minp∈P d(p, p′) = max
p′∈P̃ mins∈P∪Q d(s, p′).

Likewise, since argmin
r′∈R̃ d(p, r′) ⊆ P̃ , ∀p ∈ P , we have

maxp∈P min
p′∈P̃ d(p, p′) = maxp∈P min

r′∈R̃ d(p, r′).

Thus,

dH(P, P̃ ) = max

(
max
p∈P

min
p′∈P̃

d(p, p′) , max
p′∈P̃

min
p∈P

d(p, p′)

)

= max

(
max
p∈P

min
r′∈R̃

d(p, r′) , max
p′∈P̃

min
s∈P∪Q

d(s, p′)

)
(9)

≤ max

(
max

s∈P∪Q
min
r′∈R̃

d(s, r′) , max
r′∈R̃

min
s∈P∪Q

d(s, r′)

)
(since P ⊆ P ∪Q, P̃ ⊆ R̃.)

= dH(P ∪Q, R̃)

Similarly we can show,

dH(Q, Q̃) = max

(
max
q∈Q

min
r′∈R̃

d(q, r′) , max
q′∈Q̃

min
s∈P∪Q

d(s, q′)

)
(10)

≤ dH(P ∪Q, R̃)

Again, from (9) and (10),

max
(
dH(P, P̃ ), dH(Q, Q̃)

)
= max

(
max
p∈P

min
r′∈R̃

d(p, r′) , max
q∈Q

min
r′∈R̃

d(q, r′) ,
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max
p′∈P̃

min
s∈P∪Q

d(s, p′) , max
q′∈Q̃

min
s∈P∪Q

d(s, q′)

)

= max

(
max

p∈P∪Q
min
r′∈R̃

d(p, r′) , max
p′∈P̃∪Q̃

min
s∈P∪Q

d(s, p′)

)
= dH(P ∪Q, R̃) (since P̃ ∪ Q̃ = R̃)

5.

sep(P̃ , Q̃) ≥ sep(P̃ , Q)− dH(Q, Q̃) (using Lemma 2.)

≥ sep(P,Q)− dH(P, P̃ )− dH(Q, Q̃) (using Lemma 2.)

≥ sep(P,Q)− 2 dH(P ∪Q, R̃)

(since dH(P, P̃ ) ≤ dH(P ∪Q, R̃) and dH(Q, Q̃) ≤ dH(P ∪Q, R̃).)

Corollary 1. IfP,Q, R̃ are closed subsets of a metric space, (Ψ, d), such that dH(P∪Q, R̃) < 1
2 sep(P,Q),

then R̃ is a separation-preserving perturbation of P and Q.
As a consequence, the separation-preserving partition, {P̃ , Q̃}, of R̃ as defined in (8) satisfies prop-

erties ‘1’ to ‘4’ in Lemma 3, as well as property ‘5’ (if (Ψ, d) is a connected path metric space) with an
additional inequality:

sep(P̃ , Q̃) ≥ sep(P,Q)− 2 dH(P ∪Q, R̃) > 0

Proof. The result follows directly from Lemma 3 by observing that

max
r′∈R̃

min
s∈P∪Q

d(s, r′) + dH(P ∪Q, R̃) ≤ 2 dH(P ∪Q, R̃) < sep(P,Q)
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