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Motivation : Multi-agent Path

Planning with Constraints

Goal directed navigation
— N heterogeneous robots
Trajectory of " robot: 7,

Intermediate tasks

(e.g., exploration of rooms)
Constraints, (), (7, ;) = 0
(e.g., on time-parametrized distance

between trajectories)

Optimal plan satisfying constraints (minimize net cost)

Vijay Kumar

its Application to Multi-robot Path Planning

Maxim Likhachev

Problem Definition

Find {/’Ti JR aw}k\f} — argminm...wN Z Cj (Wj)
J=1..N (1)
S.t. QU(W:(jW;():Oj ij:]_N

e Size of joint state space increases exponentially with N
(coupling due to constraints)

 Need for fast planning as well as theoretical guarantees

e Potentially non-convex cost and constraint functions
(e.g., cluttered, non-trivial environments)

Approach : Iterative planning in individual state-space with guarantees

Example: 6 robots with rendezvous constraints
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Overview —

—

A. Convert (1) to a series of unconstrained optimization problems, (2) (soft constraints)
B. At k" iteration, robot » solves only for . based on other robots’ current @’s
~ C. Increase penalty weights on constraint violation
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ﬂ.g _ argminﬁ.ci(m), Vi e NV Planning robot (r) = 1 Planning robot (r) = 2
) ‘ Final converged solution
J , , k41 k : satisfying constraints
WHHL = W* + €% ComputeStepDirection(W*, {m}*, r) ’7TjJr =7, jEr vine
k+1 : 1, k
Subproblem> R argmin__ ¢ (m0) + >, " Wi Qe (mf mr)| (2)
Theoretical Analysis

Definitions There exists directions, which we call Separable Optimal
NN (1.2, N} Theorem 1: If the Step Direction returned by procedure | Flow Directions, in which we can increment the penalty

PN — {{172}7{1’73}7"' 7{17N}7{273}7{274}7”' 7{N_17N}}
PTJ‘V — {{LT})"' 7{70_ 17T}7{T+ lar}a"' 7{N7T}}

V and W are vectors with N(N-1)/2 elements

Z cr(mr) + Z Wit Qe (71, 1)

{ﬁ}(W) = arg mln{ﬂ.} [
keNN {kl}ePN

]

minﬂ,,_[Cr(Wr)-l- S Wl,krﬂkr(ﬁk(wg),m]

{kr}E'P;}.V

U, (Wi, Wa)

ComputeStepDirection at the k™ iteration of the
Algorithm, along with a small step size, e” . define a

Separable Optimal Flow at W forV,,_, V k, then V £
{nf,..., ™} = arg ming 4 [Zz’ENN c(ms) + Z{z’j}epNWiI} - Qi (i, Wj)}

weight vector W, such that the global optimum for the new set
of penalty weights differs from the previous global optimum in
only one partition of the optimization variables, namely ..
Thus, by moving along such a direction in k& iteration, we only
need to change x, , and still remain at an optimum of the

penalized net cost. oF T, (Wk ), Vi k /

l.e.

Forasmall € , Vis a Separable Optimal Flow Direction forV, at W
ff: o, (W4 eV, W) = U, (W, W < U (W + eV, W + V) — U (W, W + V)

= (eV)T [\;p&,l-“(w, W)] (V) >0
and, V;; =0, VY{i,7j} such that r & {7, j}

Vis an Ascent Direction at W iff: > ViyQu(TL(W),TI;(W)) >0
{ijyePN

“\

" Theorem 3: If the functions ¢, and £, are

/T

heorem 2: If the condition in Theorem 1 holds, and the
Step Direction returned by procedure
ComputeStepDirection at the k™ iteration of the Algorithm

If we always increment the penalty\
weights along directions that are both
Ascent  Directions and  Separable

. . . Optimal Flow Directions, we will
\Algorithm converges to an optimal solution, if one exists. | optimum, if it exists. Y
N

__differentiable up to second order, and &, (z, 7)) 1s of the form G (x;,— x;), where G, 1s continuous, smooth and even, then we can

L compute a Step Dir ection, 1f one CXiStS, that satisfy Theorems 1 & 2, at a given Wk{We use mollification techniques to smoothen ¢, and €;; if and when requiredl

Planning in a cluttered environment with spatio-temporal constraints:

Conclusions

Results

An exact implementation:

T = [Start,, Yro, Yrs, s YrL, goalT}T

cr(mr) = a ((yr2 — starty)” + (yrs — yr2)” + - - ’)1/2

8 (s — o) — (s — 9e2))
(Yrs — yra) — (Yra — yr3))? +-++)

1/2
Qab(ﬂ-aa 7Tb) — ((yacl — ybcl)z + (ya02 — ybc2)2 4 .. )

Planning in continuous space with
rendezvous constraints
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(b) k = 50 (¢c) kK =150 (d) Converged solu-

tion, k = 216

(a)  Unconstrained
plans, K = 0

(a) Symmetric case: (b) Symmetric case: (¢c) An asymmetric case:
a=0,8=1 a=1,8=0.2 a=1,=0

Ex. 1: Planning with extended rendezvous

Unconstrained solution

Ex.2: Planning with tasks and constraints
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* Developed an algorithm for
efficiently solving large
optimization problems with
nonlinear constraints in
distributed fashion.

* Theoretical analysis gives
conditions required for guarantees
onh convergence and optimality.

Implemented the algorithm on
multi-robot planning problems in
complex environments.

/ Ex.3: Heterogeneous agents
performing complex tasks in 3D:

Mobile ground patral

O,

N\

UAV exploring
Building-2

Optimal plan satisfying
communication constraints

UAY exploring
Building-1

Messenger UAV

coordinates
as Tasks
]
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