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Challenges and Motivation

Graph-search based approaches

Graph construction by discretization of configuration

space, and Dijkstra’s, A* search

Continuous approaches
Gradient descent, vector fields,
solving Geodesic equation, etc.

Pros:

Pros:

* Fast, efficient (in low dimensions) ——>* More suitable for capturing
* Complete } 5 continuous topological and metric

* Indifferent to non-convexity, holes in the features of configuration space
environment e Gradient descent methods scale

* Globally optimal (in the graph) well with dimensionality.

* Works well for non-Euclidean metric }

Cons: Cons:
* Topological information about the 7 -+ Inability to deal with non-
environment largely lost convexity &holes in config. space
e Optimal path in the graph may not be —>* Local minima
optimal in the original metric space | . * Slow convergence,
* Graph size and search complexity increases computationally difficult (e.g.
exponentially with dimension of configuration solving Geodesic eqn.)
space (e.g. multi-robot config. spaces, tasks).

Can we design methods using both techniques to complement each other? f
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Quick overview of A* search

Algorithm to find least cost path in a graph (e.g.
graph created by discretization of an environment)

# start

goal

* Important feature:
No need to store entire
graph in memory from
beginning
— nodes and edges are
“created on the fly”,
incrementally.
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Overview of My Work

Planning with Topological constraints — Homotopy &

Homology class constraints
(AAAI 2010, RSS 2011)

Incorporating Metric Information using search-based
techniques — Voronoi Tessellation in Non-convex

Environment with Non-uniform metric
(DARS 2010)

Transformation for Efficient Optimal Planning in
Environments with Non-uniform Metric

Dimensional Decomposition — Distributed

Optimization using Separable Optimal Flow
(RSS 2010, ICRA 2010)
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Search-based Path Planning with
Homotopy Class Constraints

The 2-dimensional case

Bhattacharya, Kumar, Likhachev
The Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2010)
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Homotopy Classes

Definition Motivational Example

Trdyajtotmsas idifeneat - . |
Hhemmatiopy o Essses Deploy|r.1g multlplg agents for:
* Searching/exploring the map

* Pursuing an agent with uncertain paths

Other applications:

goal

o ,°

’ . Imes T —
. __7 .
) start

e.g. in tracking dynamic agents

) ¢ through multiple occlusions Avoid or visit certain
‘ J. Shi, et al. X |
. . omoto classes
Path prediction Py 6 of 50




Our Goal

* Plan for optimal cost paths, cost being any arbitrary
cost function (not necessarily Euclidean distances).

* Derive an efficient representation of homotopy classes

* Avoid certain homotopy classes or constrain to certain

homotopy classes — homotopy class constraints. c"strained
optimization!

e Efficiently plan in arbitrary discretization and graph
representation (Uniform discretization, unstructured
discretization, triangulation, visibility graph, etc.)

* To be able to use any standard graph search algorithm
(Dijkstra’s, A*, D*, ARA*, etc.).

Our approach: Exploit theorems from Complex analysis —
Cauchy Integral Theorem and Residue Theorem
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Basic Concept
(Construction)

f,, for example, can be any
/ arbitrary polynomial in z
i it
& F(z) = 01~
Sl P Ty By pan

'/ Define an Obstacle Marker function such
that it is Complex Analytic everywhere,

Re
except for having poles (singularities)

Represent the X-Y plane by at the representative points

a complex plane
i.e. A point (x,y) is
represented as z =x + iy

Complex Analytic Function =
Complex Differentiable Functions:

" : o FO=Fx+iy) =ulxy) +ivix,y)
Place “representative points”, C,

, X u(x,y
inside significant obstacles Equivalently, (y ) = ( Vgx,yg )
with u, v following certain properties (V2u = V?v = 0)
which are guaranteed when x & y are implicitly used
within z in construction of ‘F.
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Basic Concept

(Properties of Complex Analytic functions)

A direct consequence of Cauchy Integral Theorem and Residue Theorem

Ima fO( )
F(z) =
(z = Gz —C2)- Z&\QN
/T]:(z)dz = ] F(2)dz # TJ’:( 2 )dx

V¢ .
An alternative

But the singularities lie
(preferred):
on the obstacles!! -
f1( )
o
The value of L(7T / F(z)dz uniquely defines fﬁ("*")
Fl(z)=| z2— 6
the homotopy class of a trajectory = ) :
: . : : fn(2)
Note: L is an additive function of the trajectory: .
L(z; Uty = L(7)) + L(z,) : .
— we will exploit this for graph-search algorithm 9 of 50




Switching to a Discretized Perspective

A trajectory in a discretized setting,
is nothing but a path in the graph

[ree = 2, [ron

edge e
inpath T

An integration along a path in the graph
is nothing but

summation of the values of L(e) of the
edges e along that path

L (Z start_)Z 2) =L (Z start_)Z 2) + L (e)

_ Turns out, L(e) can be computed efficiently
Child node using a closed-form analytical expression.

z Parent node (more details in paper)
start 10 of 50



Graph Construction
(The L-augmented graph)

Given the graph ¢ = (V, 8) laid upon the environment,
we construct,

Gr(9) ={Vr,&L}
2in G (7, L(z—7)} in G,

More details on Graph \ Yeact
construction in paper

Insight into graph topology:

unigue goal state

g
{24, Ag}
— /
Moo= gt H S \
—— . ] \._\% \
---———--_-:::{; (/ /
< (z, L(e))+LA(e3)) ot \
start * Dop g S\
(z,, 0+00) (zg, L(ey)tL(ey)) : & \:\ \ O\ \-*
) €4 {Zg s _/_1} L1
Goal states being distinguished by
gL (1, Liey) 11 0f50

homotopy class of path taken to reach it gL



L-augmented Graph GL(G) = {Vr. &L}

- Formal definition: IWhere’
( z €V, and, )
) A ¢ B (or equivalently, A" € A)
Homotopy Class Constraints: Vi = 1{z,A} if 2 = 24, and, >
A = L(zs — z) for some trajectory
Set A= {ai, a9, -+ ,a,} denotes the set \ Zs = 2 from 25 1o 2 )

of L-values of allowed homotopy classes 2. And, edge {{z,A} — {2/.A’'}}isin & for {z,A} € VL

and {2/, A"} € Vp, iff
Set B={/31,52,--, 05} denotes theset | (z 2V e & and

of L-values of blocked homotopy classes ii. A'= A+ L(z — 2'). where L(z — 2') is the L-value

of the straight line segment joining the adjacent nodes
zand 2/

3. And, the cost/weight associated with an edge {{z, A} —
{2/, A'}} € £ is same as the costof the edge {2z — 2’} €
E.

Theoretical guarantee

Theorem 1. If P; = {{z1,L1},{22,L2}, - ,{2p,Lp}}
is an optimal path in Gy, then the path P* =
{21,209, ,2p} is an optimal path in the graph G satis-
fying the Homotopy class constraints specified by A and B
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Implementation details

e Small obstacles

We can ignore small obstacles or potential noise (incorrect
reading from sensor data) by choosing not to put a { on an
obstacle.

Imxy

Re
e Single search for finding least cost paths in different
homotopy classes

We can perform a single graph search to achieve this by
continued expansion of states.
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Experimental Results for 8-connected Grid
(Homotopy class exploration)

538 % 8y 85y

(a) No homotopy
class constraint

sz e b sy sy

(b) B= (c) B={-409.76+
{—409.764+2557.70i}.  2557.704,567.90+
2220.77i}.

5 & B B o8 B & & B8

(b)y B = {52.15 4+ (c) Non-Jordan
85.97i}. curve. Hhotso



Results
(“Visibility” constraint translates to
homotopy class constraint)

100p 1001 100p

g 2g
a0} a0t I aol
a0 aof aof
70} 70 7o}
g0l B0} gof
s0f 50t ’ sl
40 40t | 40
a0l 3ot aof
20t 20t z 20k
2 2
s g {1s s
10fF 10t 10
P
n 1 1 1 1 u 1 1 1 1 l] 1 1 1 1
0 20 40 50 a0 0 20 40 0 20 0 20 40 0 80

(ﬁ) Unconstrained plans of (b) Robot 2 determines L- (C) Optimal plan with visi-

two robots value of desired hmtp. class bility constraint satisfied
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More applications

Subhrajit Bhattacharya, Vijay Kumar and Maxim Likhachev (2010)
“Search-based Path Planning with Homotopy Class Constraints”.
In Proceedings of The Twenty-Fourth AAAI Conference on Artificial Intelligence.

Revisit if there is time:

R B oseEoT ) t=1 (e) t =19 (h) t = 81
i —— ?
H H 1 .
(€) w=008={—841+ (d) w 0L B =
8.414) {—8.41 + 8.414} ©t=1 (d) t =30 (e)t=113 16 of 50



Results
(Demonstrating efficiency and scalability)

60

run time (s)
50l — — 7 -~ states expanded (105)
al
Hnl e
[} //_,-
S aof '
ri 1
’ : /
" 3of o
'

1 | 1 1 1 |
8 10 12 14 16 18

2 4 6
Homotopy Class (in order of least cost path)

Exploring 20 homotopy classes in a
1000x1000 uniformly discretized environment

Time required for finding all the 20 homotopy classes < 50 seconds 17 of 50



Results
(Implementation on a Visibility Graph)

20r

18+

16+

141

12+

10+
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Homotopy Classes in
3 Dimensional Configuration Spaces

Bhattacharya, Likhachev, Kumar
Robotics: Science and Systems (RSS 2011) [to appear]

N © R

Trajectories in different homotopy classses

Q

Trajectories in same homotopy classs 19 of 50



We exploit theorems from
Electromagnetism

Biot-Savart’s Law

B(r)—@L(Xr)XdX

A4 |x —r|]?

Ampere’s Law

E(C) = / B(l) -dl = polene
C

B: Magnetic field vector
Ho: Magnetic constant (can be chosen

as 1 with proper choice of units)
20 of 50




Constructions on 3D obstacles

Arbitrary obstacles f %z Vi

Close unbounded obstacles

A simple homotopy

Virtually decompose
inducing obstacle (SHIO)

genus > 1 obstacles

Construct skeleton of a SHIO and model

that as a current carrying conductor 21 of 50



Homotopy Sighature

Virtual Magnetic Field due to it" SHIO
1 (x —r) x dx
Bi(r) = —
=5, e

h-signature of trajectory

H(7) = [hi(7), halT), ..., ha(T)]F

where,

hi(r) = / B, (1) - dI

Implication/consequences —
coming up in a few slides!

Proposition:
hi(tg U —19) = leU_TQB@.(l) -dl  Two trajectories are in same
homotopy class => their
h-signatures are same

= ha(n) — hi(r2)




Analytic computation of
Virtual Magnetic Field

Construct skeletons of SHIO such that it
is made up of line segments

1 n; . .
Bi(r)=—) ®(s/.s].r)

j=1 !
B(s)s) 1) = 1 (d xp' dx P) The virtual magnetic field, B, can be

[afi> \ el el

computed efficiently using closed form
formulae. 23 of 50



H-signature augmented graph

Definition is similar to that of L-augmented graph

Gy = {Vu.Eu}

where,
L.
v e V. and,
h = H(v.v) for some trajectory
Vi = ¢ {v.h} vav € P(ve,v). and,

h € .4 (equivalently, hh & B)
when v = v,

2. Anedge {{v.h} — {v/,h'}} 15 in Ey for {v h} & Vy
and {v" h'} € Vg, iff
1. The edge {v — v'} € £ and,
i. h' = h+H(v = v"), where, H(v — ') is the
homotopy signature of the edge {v — v'} € £.
3. The cost/weight associated with an edge {{v,h} —
{v'.i’'}} is same as the cost/weight associated with edge
v v'lel

Same theorem for optimality holds.
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Results

Exploration of 4 homotopy classes Exploration of 4 homotopy classes
in presence of 2 SHIOs in presence of 4 SHIOs  154¢50




Results

Exploration of 10 homotopy classes
in presence of 7 SHIOs

50r

50t

40}

30¢

20¢

10f/

— nodes expanded (10‘4}
— time taken (s)

0 2

4

6 8 10

Number of homotopy classes explored

44 x 44 x 44 discretized workspace —
We precomputed the h-signatures
for all edges in the graph (takes

~20 mins)
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Planning for paths in
Complementary homotopy classes

The two trajectories pass on
the opposite sides of each
and every pipe

The h-signature of trajectory
complimentary to t:

H(T) — sign(H(T)).

27 of 50



Planning in X-Y-Time configuration space —
Moving obstacles in 2 dimensions

Movie
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Homotopy vs. Homology

Does the method discussed for 3-dimensional case
really let us impose homotopy constraints? ... rhis issue does not

arise in the 2-D case

No! Strictly speaking, it is homology constraints and
homology classes that we are looking into.

However, since trajectories belong to the same
homeomorphism class (homeomorphic to [0,1]), the
identification of homotopy and homology is justified in

most practical cases. e.g.,

* They exactly agree in X-Y-Time configuration spaces. But some
pathological cases may arise in X-Y-Z spaces with linked obstacles.

* Since “NOT homologous” implies “NOT homotopic”, the
problems of exploring different homotopy classes is not affected!
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Can we do similar things in 4 and higher
dimensional configuration space?

Yes, we can!

Bhattacharya, Likhachev, Kumar

“A Homotopy-like Class Invariant for Sub-manifolds of Punctured Euclidean Spaces”.
Electronic pre-print. arXiv:1103.2488 [work in progress]

Recent collaboration with Dr. Robert Ghrist and Dr. David Lipsky

Similar treatment for homology of N-1 dimensional

boundaryless manifolds embedded in D dimensional Euclidean

ambient manifolds with D-N dimensional discontinuities.

* Unification of theorems/laws from Complex analysis,
Electromagnetism and Electrostatics.

* Generalization to higher dimensional spaces.

Skip details!
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Exploration of homotopy classes in a 4
dimensional configuration space —

X-Y-Z-Time — Moving obstacles in 3D

Movie
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Future directions

 Reformulate some of the theoretical analysis
in terms of homology and cohomology o
instead of cobordism & surgery theory. o ngeing)

* Extend to topologically non-Euclidean
configuration spaces (e.g. joint space of
robotic arms).
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Overview of My Work

Planning with Topological constraints — Homotopy &

Homology class constraints
(AAAI 2010, RSS 2011)

Incorporating Metric Information using search-based
techniques — Voronoi Tessellation in Non-convex

Environment with Non-uniform metric
(DARS 2010)

Transformation for Efficient Optimal Planning in
Environments with Non-uniform Metric

Dimensional Decomposition — Distributed

Optimization using Separable Optimal Flow
(RSS 2010, ICRA 2010)
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Entropy-based metric for exploration and coverage

Bhattacharya, Michael, Kumar
10th International Symposium on Distributed Autonomous Robotics Systems (DARS 2010)

Recall: Voronoi tessellation V:;(P) = {q c Q2 | d(qa Pf::) < d(qa Pj)a Vi # 3}

Uncertainty (lack of knowledge of occupancy of a discretized cell) in an
environment is modeled by entropy: ¢(q) = p(a) In(p(q)) + (1 — p(q)) In(1 — p(q))

Non-Euclidean d — weighted by entropy:

SSSSSSS

Region of ’

high Entropy

s d(p,q) = min /Eﬂ(r)dz,

~vel(p,q)

| Splits entropy equally

In non-convex environment, d is the “geodesic distance”.

Solution:
Graph-search based wave-
front expansion for
determining Voronoi
tessellations.
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 We use a modified version of the Lloyed’s
algorithm for exploration.

Note:
Lloyd’s algorithm guarantees
convergence to a local
minima of

i /W f (d(q, pi))o(a)dq,
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Result

4 robots in a 1000 x 783
uniformly discretized
environment.

Each iteration (time-step)
takes about 1.7 s.

(C++ implementation
running on a single
processor)

t = 2800 (convergence achieved)
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Future directions

* For the modified Lloyd’s algorithm for non-
convex regions we use an analog of
generalized centroid (projected centroid). We
would like to investigate the possibility of
actual computation of generalized centroid.

CY" = argmin f f(d(q p:))d(a)dq
Vi

p:eV;

(proposed
-- feasibility to be investigated)
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Overview of My Work

Planning with Topological constraints — Homotopy &

Homology class constraints
(AAAI 2010, RSS 2011)

Incorporating Metric Information using search-based
techniques — Voronoi Tessellation in Non-convex

Environment with Non-uniform metric
(DARS 2010)

Transformation for Efficient Optimal Planning in
Environments with Non-uniform Metric

Dimensional Decomposition — Distributed

Optimization using Separable Optimal Flow
(RSS 2010, ICRA 2010)
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Graph-search techniques are Although the solution is least-
well-suited for: cost in the graph, it may not be
* Non-convexenvironments  BUT ¢4 in the original continuous

* Non-uniform (non- configuration space!
Euclidean) metrics 8 P -

goal . . . .
o RS However, if the metric is flat (i.e.
Pl P Euclidean), we can use visibility-
O O Gl *wwo
SR SRERREREE § 200 based approaches:
SHNRE 5 -
}iuuuuuuuu:¢i= :--Irt-:} ° DO pOSt-pFOCESSIﬂg
bR L= o « e ey
e o ol -4 o0 * Employ visibility graph
b & * Use theta-star algorithm [nash, et al.]
SRR * etc
| N 3 % ¥ XXX
s Start swsonon .
R T L Questlon:

Given an arbitrary metric space, can
we find a transformation to a flat

metric space?
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Study under progress — preliminary results!

Mesh in digi Mash in transformed space
Cdm-ir:k:gmgfnﬁ Caolor indicate corespondence

1 0
— (2 2 _
g=(x"*y") [ 0 1 ] [ 0 1 ]
Isotropic, but non- T — 2/9) —
. P . (@, y) Im(z_ /2) Y Isometric embedding of barrea
uniform metric Ulw.y) = —Re(/2) = (y* — a%)/2. coordinates in Euclidean plane

This can be written as |z|*. This is hence a conformal map. This is the same metric spaces
with zero scalar curvature, being described by 2 different coordinate charts.

Relaxed question: Given a metric space, can we find a coordinate chart,
whose natural embedding in Euclidean plane maps geodesics to

40 of 50
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A major future direction:

Other metric spaces to be investigated:

Real projective Plane (admits constant positive curvature metric)

(Op) — (x,p)

1 0
0 sin?(0)

(spherical metric)

Geodesics map to “straight lines” on the
plane (upon embedding using usual
Euclidean metric), but non-isometrically!

Hyperbolic Space (admits constant negative curvature metric)
Beltrami—Klein model:
* The whole hyperbolic plane is mapped to the interior of a circle
* Geodesics on hyperbolic plane maps to straight lines.
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Future directions

e Characterization of metric spaces that has at
least one representation (i.e. coordinate
chart) whose natural embedding in Euclidean
space maps geodesics to straight lines (may
not be isometrically).

(major future direction)
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Overview of My Work

Planning with Topological constraints — Homotopy &

Homology class constraints
(AAAI 2010, RSS 2011)

Incorporating Metric Information using search-based
techniques — Voronoi Tessellation in Non-convex

Environment with Non-uniform metric
(DARS 2010)

Transformation for Efficient Optimal Planning in
Environments with Non-uniform Metric

Dimensional Decomposition — Distributed

Optimization using Separable Optimal Flow
(RSS 2010, ICRA 2010)
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Distributed Optimization with Pairwise Constraints
and its Application to Multi-robot Path Planning

Bhattacharya, Kumar, Likhachev
Robotics: Science and Systems (RSS 2010)

A motivational example: Cluttered, non-convex environment

— discretization and graph-search
based techniques desired for fast,
optimal planning.

»
.
b .
N ,
o, ~

-
L.l
[T

Robot configuration spaces coupled

by constraints

Unconstrained solution  Optimal plan satisfying — size of joint statespace increases
exponentially with N (number of

robots).

]
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How to efficiently and optimally solve this
huge problem?

Dimensional decomposition!

. o, ® . 4 e . . .
Problem definition: -{"}Tl e ?TJ“'J} — a[gn]]nwl_uw_w Zj:l...ﬁf ..-_f:[:“j}
(Goal directed navigation of .
N heterogeneous robots) S.t. Qij(ﬂ:iﬂ 77:]) =0 (e.g., time-parametrized distance constraint)

k41 . k+1 k i i

graph search for it" robot.

How to increase the weight vector so as to guarantee Separable optimal flow:

i i i itv? U (W 4 eV, W) — O (W, W

i. convergence, ii. optimality: 1 ( - e 8_1_1,“%,,! H"’—Bdf’) LG WW )
WL = W* 4 * ComputeStepDirection(W®, {x}",r) 7"’_’?+ - j2r and, Vi; =0, ¥{i,j} such that v ¢ {3, j}

ix rob lanning i Vel iof d ) Ascent direction:
§|x robots p anning iteratively to satisfy rendezvous constraints S V00 (T W), T (W) > 0
in an empty environment: (AP

ol oRolkoRoRo] More details if

-]

/ time permits

a0 il t \
0f 0 0 0
0
0
° o o

jump to slide

& 8 B

20 ol 0+
(Y M (D oM. O 1 2 3 4 5 6 1 2 3 4 5 8 ( 2 4 \E
o\ a\A N w0 W i N i YA m w48 s s 70 & 0 R N ] e wm w  m m  m e i
S1 S2 S3 S4 S5 S6 ) ’ i
lteration (k) = 0 Iteration (k) = 1 lteration (k) = 2 Iteration (k) = 12

Planning robot (r) = 1 Planning robot (r) = 2 Final converged solution 45 of 50
satisfying constraints



Additional complexity - Tasks

Bhattacharya, Likhachev, Kumar
International Conference on Robotics and Automation (ICRA 2010)

Introduce the notion of task graph:

=
o
(=1
=

o e
SOES
@@(@f@q}@

SR
SIS
()
Modified graph to search in:

Product of configuration space
discretization graph & the task graph
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Movies
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Future directions

* To investigate the conditions under which
“separable optimal flow” and “ascent
direction” are guaranteed to exist.

(proposed future direction)
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Proposed timeline

e Until September/October’11:

1.Re-writing of the chi-homotopy in terms of homology
and co-homology.

2.How to find coordinate chart on metric spaces such
that it’s natural embedding in Euclidean plane maps
geodesics to straight lines.

 October’ll —January’12:

1.Investigation of conditions for existence of
“separable optimal flow” and “ascent direction”.

2.Finding generalized centroid of non-convex regions
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Thank you!
Questions?
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Additional slides



(Non-Euclidean Cost function)

c=J ds+w [ x(s)ds

Results

[

(a) w=0.058={}

(b) w=o0.01.8={}

Ll

(C) w=0.0B={-841+

8.414i}

(d w = o001 B
{—8.41 + 8.414}
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Results
(Planning with additional coordinates)

Planning in X-Y-Time

Planning in dynamic environment
without homotopy class constraint n o

(f) t = () t =19 (h) ¢ = 81

Planning in dynamic environment
with a homotopy class blocked

- H
|1 . | I
Homotopy classes defined by E— ‘T

taking projection on X-Y plane
c)t=1 (d) t =30 (e)t =113
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Definitions

NN ={1' 2, 'N} {II}H(W) := argming ., [ Z cr(me) + Z Wi Qe (ke 1) ]
PN = {{1‘2}*{173}* 7{17N}7{273}7{274}7"' 1{N_19N}} keN ™ {kl}eP X
PN ={{1,r}, - Ar—1,r {r+1,7}, - {N,r}} W, (Wi, Ws) = ming, [Cr('ﬂ'r")+ Z W g Qe (T (W), Wr)]
V and W are vectors with N(N-1)/2 elements {kr}epX
Forasmall €, Vis a Separable Optimal Flow Direction for Vo at wiff: V'is an Ascent Direction at W iff:

V(W eV, W) =W, (W, W U (W + eV, W +eV) — U (W, W + €V) ST V(W) T (W) > 0

= (V)" [wD W, W) (ev) > 0 {i7}ePN

and, Vi; =0, V{i,j} such that r ¢ {i,j}

Theorem 1: If the Step Direction returned by procedure ComputeStepDirection at the k iteration of the
Algorithm, along with a small step size,e'lC , define a Separable Optimal Flow at W* for W,. | V k, then V k

{rf,..., 7k} = argming ., [ZieN’N c(mi) + Z{@.j}epNWi’} : Q@'j(ﬂ'i,ﬂ'j)} cie m =TL(W"Y), Vi, k

Theorem 2: If the condition in Theorem 1 holds, and the Step Direction returned by procedure
ComputeStepDirection at the k™ iteration of the Algorithm is also an Ascent Direction at W, for all k,

then the Algorithm converges to an optimal solution, if one exists.

Theorem 3: If the functions ¢, and €2;; are differentiable up to second order, and ©(, 7)) is of the form
G, (r;— m;), where G; is continuous, smooth and even, then we can compute a Step Direction, if one
exists, that satisfy Theorems 1 & 2, at a given WX,
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