
A Topological Approach to Using Cables to
Separate and Manipulate Sets of Objects

Soonkyum Kim
Department of Mechanical Engineering

and Applied Mechanics
University of Pennsylvania

Philadelphia, PA 19104
Email: soonkyum@seas.upenn.edu

Subhrajit Bhattacharya
Department of Mathematics
University of Pennsylvania

Philadelphia,
PA 19104

Email: subhrabh@math.upenn.edu

Hordur Heidarsson
Department of Electrical Engineering

University of Southern California
Los Angeles,

CA 90089
Email: heidarss@usc.edu

Gaurav S. Sukhatme
Department of Computer Science
University of Southern California

Los Angeles,
CA 90089

Email: gaurav@usc.edu

Vijay Kumar
Department of Mechanical Engineering

and Applied Mechanics
University of Pennsylvania

Philadelphia, PA 19104
Email: kumar@seas.upenn.edu

Abstract— In this paper we study the problem of manipulating
and transporting multiple objects on the plane using a cable
attached at each end to a mobile robot. This problem is motivated
by the use of boats with booms in skimming operations for
cleaning oil spills or removing debris on the surface of the water.
The goal in this paper is to automate the task of separating the
objects of interest from a collection of objects by manipulating
them with cables that are actuated only at the ends, and then
transporting them to specified destinations. Because the cable is
flexible, the shape of the cable must be explicitly modeled in the
problem. Further, the robots must cooperatively plan motions to
achieve the required cable shape and gross position/orientation
to separate the objects of interest and then transport them as
specified. The theoretical foundation for the problem is derived
from topological invariants, homology and homotopy. We first de-
rive the necessary topological conditions for achieving the desired
separation of objects. We then propose a distributed search-based
planning technique for finding optimal robot trajectories for
separation and transportation. We demonstrate the applicability
of this method using a dynamic simulation platform with explicit
models of the cable dynamics, the contact between the cable and
one or more objects, and the surface drag on the cable and on the
objects. We also describe our preliminary efforts to develop an
experimental platform consisting of a system of two cooperating
autonomous boats.

I. INTRODUCTION
This paper addresses the motion planning for and control

of the shape of a flexible cable to separate a specified set of
objects from other objects and to transport the specified objects
to a destination. Object manipulation is of course an important
problem in robotics. Certainly conventional approaches to
manipulation using robot arms with grippers has received
considerable attention and is well understood [30, 12]. In con-
trast, we are interested in the use of mobile robots to contact
and manipulate objects without special purpose effectors. This
allows more versatility but leads to many challenges. One
approach relies on caging an object using multiple mobile
robots. This problem has been studied for planar objects [14].

However, the ratio between the number of objects manipulated
at a time, and the number of robots required for doing that is
small, thus making such an approach highly inefficient for
manipulating a large number of objects and for separating
objects in a field with obstacles. In contrast, we propose a
framework for manipulating a large number of objects with
only a pair of robots.

The advantages of using ropes with robots for manipulation
were demonstrated by Donald et al [13]. An interesting
problem that arises in these settings is the modeling of the
shape of the cable and the motion planning for the robots to
control the position and shape of the cable. Motion planning
for manipulation of rope-like flexible objects is discussed
in [25]. The problem of entangling and disentangling knots
and the motion planning for this problem has been addressed
in [22]. Our goal, however, is the motion planning that is
required to manipulate objects on the plane and we are less
interested in the specific configuration of the cable. The use of
robots to tow objects using cables is discussed in [20, 9]. An
extension of these ideas leads to using a cable with its ends
tied to robots to cage and tow objects. Indeed this method is
widely used in skimming operations on water surfaces [24,
21]. A description of the dynamics of such systems and an
analysis of the problem of cooperative skimming are provided
in [4, 2]. However, this work does not explicitly address the
manipulation of objects.

In this paper, we discuss the planning and control of the
motions of two robots, each of which is tied to one end of a
flexible cable, with the goals of (a) separating a specified set
of objects from other objects; and (b) to transport the specified
objects to a destination. The first step, as one might expect,
is to navigate the robots around the objects so that the cable
separates the objects of interest from the ones that are not of
interest. The problem of finding a hypersurface separating two
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(a) The initial configuration of the cable and the
two robots in the workspace W with boundary
∂W .
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(b) A separating configuration of the cable, C, that
separates the two types of objects.

(c) A possible set of trajectories that take the cable
from the initial configuration, Ci, to a configura-
tion homotopic to the separating configuration, Cf .

Fig. 1. The problem of separating the two types of objects.

types of objects is studied as part of statistical classification
problems [7, 28]. However such methods are susceptible to
finding curves that can have disjoint components, do not
have guarantees on optimality, and are statistical in nature.
Moreover, the problem of finding a separating cable config-
uration (the curve) that separates the objects does not give
us a necessary means of finding the trajectories of the robots
that achieve that configuration. The first key contribution of
this paper is a topological description of the problem of
separating two sets of objects and the algebraic formulation of
the separation problem. The second contribution is a complete
motion planning algorithm that relies on graph search [10]
to drive the robots in order to achieve separation and then
transport the objects to specified destinations. We also derive
a decoupled algorithm that has the advantage of only requiring
to plan in the individual robot’s configuration space instead of
the joint state-space.

II. PROBLEM DESCRIPTION

We consider the scenario where there are two classes of
objects present in a flat enclosed region, W . For convenience
we will refer to the two classes as ‘blue’ and ‘red’. Without
loss of generality, one of these classes of objects will be
considered to be of interest (i.e., those need to be manipulated
and transported), while the other consists of obstacles or
objects that are not of interest. A flexible cable is attached, at
its two ends, to two robots that are capable of navigating on the
flat surface. Given an initial configuration of the cable and the
robots (Figure 1(a)), we need to first make the robots follow
trajectories to the boundary of the enclosed region, ∂W , such
that the final cable configuration ‘separates’ the blue objects
from the red, which we call the separating configuration
(Figure 1(c)). Once that is achieved, the robots can move along
∂W to enclose one type of objects and “pull” them out, thus
separating and transporting those objects.

Suppose e and s are the points on the boundary reached
by the robots so that they split ∂W into ∂W1 and ∂W2

as in Figure 1(b). It is clear that the robot trajectories and
cable configurations that describe the problem and achieve the
desired objective are sufficiently described up to homotopy.
That is, if C1 and C2 are two cable configurations that are
in the same homotopy class [5], then, “C1 separates the two
types of objects”⇐⇒ “C2 separates the two types of objects”
(Figure 2(a)). Likewise, if a particular set of robot trajectories,
{τ1, τ2}, carry the cable from the initial configuration to the

desired separating configuration (up to homotopy), another set
of trajectories, {τ ′1, τ ′2}, that are homotopic to the first set (i.e.
τ ′1 ∼ τ1 and τ ′2 ∼ τ2) will achieve the same objective.

In addition to this, it should also be noted that the homotopy
class of the cable configuration that achieves the separation of
the two types of objects is not unique either. For example, in
Figure 2(a), the configuration C3 is in a different homotopy
class from C1 or C2, but still separates the two types of
objects. C ′ in Figure 2(c) is another example. Furthermore,
for a given desired separating configuration of the cable (up
to homotopy), the homotopy classes of the robot trajectories
that can carry the cable from its initial configuration to the
separating configuration, are not unique either (Figure 2(b)).

Thus, it is useful to develop a notion of optimality to more
precisely define the problem objectives. It is natural to use
length of the robot trajectories to the optimization criteria.

For the theoretical foundation and for setting up the opti-
mization problem, we will make the following assumptions:
i. The objects are assumed to be stationary rigid bodies – that

is, the cable cannot ‘pass through’ any of the objects, and that
on contact of the cable with the objects the objects do not
move. In the implementation (Section V-C) we will however
relax the conditions that the objects need to be stationary.

ii. The cable is flexible, and there is no restriction on the
length of the cable (i.e. the cable will not fall short and tug
on the robots). We assume that the cable can either be spooled
out as required from a cable reel residing on the robots, or
may stretch as in an elastic band.

III. THEORETICAL FOUNDATION
Let W be a 2-dimensional simply connected and bounded

region. Suppose it contains a set of objects, O = R1 ∪ R2 ∪
· · ·∪Rr∪B1∪B2∪· · ·∪Bb ⊆ W , where R1, R2, · · · , Rr are r
counts of red objects, and B1, B2, · · · , Bb are b counts of blue
objects. Each object, Ri or Bj , is assumed to be connected.
A. Curves in (W −O)

Both cable configurations and robot trajectories are 1-
dimensional curves in (W − O). They can thus be defined
as continuous maps from the interval [0, 1] to (W − O).
We say a curve, γ : [0, 1] → (W − O), is embedded [23]
if γ(t) 6= γ(t′),∀t 6= t′ (i.e. the curve does not intersect
itself). In our problem we will only require that the separating
cable configuration be embedded (Proposition 1), but other
curves need not be embedded. For a given curve, γ, we
define −γ : t 7→ γ(1 − t). That is, −γ is the same curve



as γ, but with opposite orientation. The line integral of a
differential 1-form, ω = fdx + gdy, over γ is defined as∫
γ
ω :=

∫ 1

0
(fγ̇x + gγ̇y) dt.

B. Homology and Homotopy Invariants
Definition 1 (Homology classes of curves): Two curves

γ1, γ2 : [0, 1]→ (W −O) connecting the same start and end
points, are homologous (or belong to the same homology class)
iff γ1 together with γ2 (the latter with opposite orientation)
forms the complete boundary of a 2-dimensional manifold
embedded in (W − O) – refer to Figure 1(b) of [5] (not
containing/intersecting any of the objects/obstacles) [5, 18].

A homology invariant is a function, H , from the space of
all curves in (W −O) (with fixed end points) to another much
smaller space (in this case, a vector space), such that H(γ1) =
H(γ2) iff γ1 is homologous to γ2. In [5] the authors proposed
a homology class invariant (called the H-signature) that is
based on simple results from complex analysis.

However, the possible choice of such invariants has been
broadened in [6], where the choice of the vector of differential
1-forms, which needs to be integrated over γ to obtain the
invariant, has been proven to be any complete set of generators
of the de Rham cohomology group, H1

dR(W−O). In particular,
the bump 1-forms [8], ωj = −υ(y − ζj,y)δ(x − ζj,x)dx,
(where δ is the Dirac delta function, and its integral, υ, is
the heaviside step function – that is, informally speaking, ωj
are analogous to a Dirac delta distribution over rays emanating
from ζj along positive Y axis) is a choice that has the simple
interpretation of counting the number of times the curve, γ,
crosses rays emanating from ζj (Figure 2(c)). In particular,
define, #jγ :=

∫
γ
ωj = (Number of times γ crosses the ray

emanating from ζj from left to right) − (Number of times γ
crosses the ray emanating from ζj from right to left). Then,
H(γ) = [#1γ,#2γ, · · · ,#nγ]

T . For closed loops the value of
H-signature won’t depend on the choice of the differential
1-forms, as long as they form a generating set of the first de
Rham cohomology group, H1

dR(W −O) [8], and will compute
the winding numbers about ζj .

Let H(γ) be the H-signature of any curve, γ :
[0, 1] → (W − O), with respect to the objects
R1, R2, · · · , Rr, B1, B2, · · · , Bb (in that order).

Definition 2 (Homotopy classes of curves): Two curves
γ1, γ2 : [0, 1]→ (W −O) connecting the same start and end
points, are homotopic (or belong to the same homotopy class)
iff one can be continuously deformed into the other without
intersecting any obstacle – refer to Figure 1(a) of [5].

Formally, if γ1 : [0, 1]→ (W −O) and γ2 : [0, 1]→ (W −
O) represent the two trajectories (with γ1(0) = γ2(0) = xs
and γ1(1) = γ2(1) = xg), then γ1 is homotopic to γ2 iff there
exists a continuous map η : [0, 1] × [0, 1] → (W − O) such
that η(α, 0) = γ1(α) ∀α∈ [0, 1], η(β, 1) = γ2(β) ∀β∈ [0, 1],
and η(0, γ) = xs, η(1, µ) = xs ∀µ∈ [0, 1] [5, 18].

Homotopy invariants, in general, are much more difficult
to design and compute. Homotopy groups, unlike homology
groups, do not have the natural structure of a vector space [18].
However, for curves in 2-dimensional plane with punctures
(i.e. obstacles/objects), there is a relatively simple represen-
tation of the homotopy group and a way of computing the
homotopy class of a given curve [16, 19, 29, 18, 3]: We
consider representative points, ζi as before, and parallel non-
intersecting rays, r1, r2, · · · , rr and b1, b2, · · · , bb, emanating
from the red and blue objects respectively (Figure 2(c)). We
form a word by tracing γ, and consecutively placing the letters
of the rays that it crosses, with a superscript of ‘+1’ (assumed
implicitly) if the crossing is from right to left, and ‘−1’ if the
crossing is from left to right. Thus, for example, the word for
γ in Figure 2(c) will be “b3r3r−13 r2b

−1
2 ”. We can reduce this

word by canceling the same letters that appear consecutively
but with opposite superscript signs. Thus, the word for γ in
Figure 2(c) can be reduced to “b3r2b−12 ”. This reduced word
representation is a homotopy invariant for open curves (with
fixed end points), γ, and we will write this as h(γ) and call it
the “h-signature of γ”. However, it is important to note that
we cannot exchange position for arbitrary pairs of letters in
the word (i.e. the juxtaposition of letters is non-commutative).
Unlike the homology invariant, this is not a vector, but an

C1
C2

C3

(a) Three possible cable configurations separating
the two types of objects. C1 and C2 are homo-
topic. But C3 belongs to a different homotopy
class. See the curve C′ in Figure 2(c) for yet
another cable configuration that separates the two
types of objects.

(b) The robot trajectories (up to homotopy) that
can take the cable to a desired separating config-
uration (up to homotopy) are not unique. In this
figure, τ1 and τ ′1 are not homotopic, neither are
τ2 and τ ′2. But either of the sets of trajectories,
{τ1, τ2} or {τ ′1, τ ′2}, take the cable to the homo-
topy class shown in Figure 1(b).
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(c) ζi are representative points inside the ob-
jects, R1, R2, · · · , Rr, B1, B2, · · · , Bb (in that
order), and ri, i = 1, · · · , r and bj , j =
1, · · · , b are rays emanating from the respective
points. Using the bump forms corresponding to
the rays in defining the H-signature, H(γ) =
[0, 1, 0, 0,−1, 1]. And, h(γ) = “b3r2b−1

2 ”.
Fig. 2. Homotopy and homology classes of cable configurations and trajectories.



element of the non-abelian group freely generated [26, 18] by
{r1, r2, · · · , rr, b1, b2, · · · , bb}. Thus, although words can’t be
added in the sense of vectors, they can be concatenated under
the non-commutative group operation, ‘�’. Also, the inverse
of a word, w, written as w−1, is the h-signature of the same
curve but with opposite orientation (i.e. h(−γ) = (h(γ))

−1),
and is a word where the order of the letters are reversed, and
the exponent of each letter is flipped (so that w � w−1 =“ ”,
the identity element). Thus, (w1 �w2)

−1
= w2

−1 �w1
−1. As

an example, (“b3r2b−12 ”)−1 =“b2r−12 b−13 ”.
However, if the curve is a closed loop (e.g. (C ′ t ∂W1) in

Figure 2(c)), there is no preferred starting point from where
we should start tracing the curve and write the word. Thus,
for such curves we need to consider the cyclic permutations
of the letters in the reduced words to be equivalent. That is, a
word, “abcde” will be considered to be the same as “cdeab”.
Thus, when reducing a word, we need to consider the cyclic
permutations, and thus cancel a letter at the beginning of
the word that appears at the end as well, but with opposite
superscript signs. For example, in Figure 2(c), if we trace the
curve, C ′ t ∂W1, starting at the point e, we get,
h(∂W1 t C ′) = h(∂W1) � h(C ′)
= “b−11 b−12 r−12 r−11 r−13 b−13 ” � “r3r2b−11 b−12 r−12 r1r2b2b1”
= “b−11 b−12 r−12 r−11 r−13 b−13 r3r2b

−1
1 b−12 r−12 r1r2b2b1”

= “r−13 b−13 r3r2b
−1
1 b−12 r−12 ”

(after canceling the letters at the start & the end),
which is the completely reduced word.

The homotopy invariant of a curve, γ, is the reduced word
constructed in the described way, with cyclic permutations of
a word being considered equivalent when γ is closed. It is
easy to note that for closed curves, the value of the homology
invariant described earlier as integral over the bump 1-forms,
does not depend on the choice of the direction of the rays
emanating from ζi. But the homotopy invariant word is highly
dependent on the choice of the direction of the rays.

The Hurewicz map: While trajectories that are homotopic
are also homologous, the converse is not necessarily true (see
Fig. 1 of [5]). The Hurewicz map [18] can be used to compute
the homology invariant from a given homotopy invariant of a
closed curve. We write h∗ to denote this map from the space
of h-signatures (words) to the space of H-signatures (vectors),
and it is essentially the abelianization map.

Thus, to compute the H-signature from a given h-signature,
we simply let the letters in the word commute. Thus, from
the earlier example of Figure 2(c), we had h(∂W1 t C ′)
= “r−13 b−13 r3r2b

−1
1 b−12 r−12 ”. Letting the letters commute we

have the word “r01r
0
2r

0
3b
−1
1 b−12 b−13 ” (with 0 superscript indicat-

ing that the letter is absent). Since the 6 components of the H-
signature vector correspond to the objects R1, R2, R3, B1, B2

and B3 respectively, we thus have H(∂W1 t C ′) =
h∗(“r−13 b−13 r3r2b

−1
1 b−12 r−12 ”) = [0, 0, 0,−1,−1,−1]T .

C. Propositions on Object Separation & Cable Manipulation
Proposition 1: Suppose C is an embedded cable configu-

ration such that C(0), C(1) ∈ ∂W (i.e. the cable ends lie on
the boundary of the environment). Say the end points of C
splits ∂W into two parts: ∂W1 and ∂W2 (which themselves

are curves in (W − O)). We assign orientation to ∂W1 and
∂W2 such that C t ∂W1 and C t ∂W2 are closed loops
(Figure 1(b)). Then, C separates the two types of objects (i.e.,
it is a separating configuration) iff one of the following holds
for the vector H(C t ∂W1):

i. The first r components are all 1 or all −1, and the last b
components are all 0.

ii. The last b components are all 1 or all −1, and the first r
components are all 0.

Note that from the definition of H-signature, H(C t ∂W1) =
H(C)+H(∂W1). Also, in these conditions the choice of ∂W1

over ∂W2 is made without loss of generality. The conditions
could have been stated in terms of ∂W2 as well.

Sketch of Proof: The proof follows from the very defini-
tion of homology (see Figure 2(a)). First we note that Ct∂W1

is a Jordan curve [15] inside W (since C is embedded). Hence
there is a simply-connected region in W (not considering the
objects) enclosed by Ct∂W1. The objects (and their represen-
tative points) that this region will contain will manifest as a ±1
in the corresponding components of the vector H(C t ∂W1).
Since C t ∂W1 is Jordan, it will wind around each of the
enclosed points in the same direction (all clockwise or all anti-
clockwise), thus making the corresponding components of the
vectors either all +1 or all −1. All the other components will
be 0. The statement of the proposition simply states that the
enclosed representative points will be ones corresponding to
the red objects or the blue objects, while the ones not enclosed
will be ones corresponding to objects of the other color.

At this point it is instructive to illustrate why, in the
above proposition, we used the homology invariant instead
of homotopy invariant. Consider the curve C ′ in Figure 2(c),
which clearly separates the red objects from blue. However
we previously saw that the reduced word for (C ′ t ∂W1) is,
h(C ′) � h(∂W1) = “r−13 b−13 r3r2b

−1
1 b−12 r−12 ”. Likewise the

reduced word h(C ′) � h(∂W2) = “r3r2b−11 b−12 r−12 r1r2b2b1”.
Neither of these words are helpful in identifying the fact
that C ′ separates the blue objects from the red. However,
H(C ′) + H(∂W1) = [0, 0, 0,−1,−1,−1]T , and H(C ′) +
H(∂W2) = [1, 1, 1, 0, 0, 0]T – both satisfying the condition of
Proposition 1 (note that the first 3 components of the vector
correspond to R1, R2 & R3, while the last 3 correspond to
B1, B2 & B3), thus indicating that C ′ indeed separates the
blue from the red objects.

Proposition 2: (Refer to Figure 1(c)) Let C be a starting
cable configuration (which has an orientation from robot ‘2’
to robot 1’, as shown in Figure 1(a)) and C ′ be a final
cable configuration (which may or may not be a separat-
ing configuration). Then the trajectories τ1 and τ2 for the
two robots carry the cable from initial configuration to the
separating configuration (up to homotopy) if and only if the
closed loop (C t τ1 t−C ′ t−τ2) is null homotopic [18], i.e.
h(C t τ1 t−C ′ t−τ2) = h(C) �h(τ1) �h(C ′)−1�h(τ2)−1 =
“ ”, is the empty word (identity element).

Sketch of Proof: We note that unlike in Proposition 1 we
don’t have the luxury of assuming that (C t τ1 t−C ′ t−τ2)
will be Jordan (see, for example, Figure 1(c)). First, suppose



trajectories τ1 and τ2 carries the cable from configuration C
to final configuration C ′. We choose two arbitrary points, p1
and p2, on the trajectories τ1 and τ2 respectively, as shown in
Figure 3. Next consider the sequence of cable configurations
from C to C ′ as the robots carry it. We can thus construct a
continuous function (a homotopy), C : [0, 1]× [0, 1]→ (W −
O), such that C(0, ·) ≡ C(·) and C(1, ·) ≡ C ′(·), and C(t) is
a general intermediate cable configuration. Such a curve, C(t),
has its end points q1(t) ∈ τ1 and q2(t) ∈ τ2 (Figure 3). We
consider the curve connecting q1(t) to p1 and lying on τ1 (call
it q̃1(t)p1), and the one connecting q2(t) to p2 and lying on
τ2 (call it q̃2(t)p2). Thus, the sequence of curves, D(t) :=(
−(q̃2(t)p2) t C(t) t (q̃1(t)p1)

)
, defines a homotopy be-

tween curves connecting p1 and p2. Thus, D(0) t −D(1) is
null-homotopic. That is,

(
−( ˜q2(0)p2) t C(0) t ( ˜q1(0)p1)

) ⊔
−
(
−( ˜q2(1)p2) t C(1) t ( ˜q1(1)p1)

)
≡ (Ctτ1t−C ′t−τ2),

is null-homotopic.

τ1
τ2

p1
p2

q1(t)
q2(t)

C = C(0)

C' = C(1)

C(t)

q2(t) p2q1(t) p1

q1(0)

q2(0)

q1(1)

q2(1)

Fig. 3. Illustration for Proof of Prop. 2.

Conversely, if
(C t τ1 t −C ′ t −τ2)
is null-homotopic,
one can construct
a homotopy, D, as
before, and hence
construct a sequence
of curves C, that takes
the cable from C to
C ′.

IV. IMPLEMENTATION
For simplicity, we assume that the environment, W , is a

rectangular region, and all the rays, rj , j = 1, 2, · · · , r and
bj , j = 1, 2, · · · , b, are parallel, pointing along the positive
Y axis. Furthermore, we restrict the final goals of the robots
to the left and right boundaries of the environment (∂Wl at
x = xl and ∂Wr at x = xr respectively), but they need to
reach the opposite edges. Thus a part of the boundary, ∂W2,
will never intersect any of the rays (Figure 4(a)), and hence
H(∂W2) = [0, 0, · · · , 0]T and h(∂W2) =“ ”. This simplifies
the computation of H(Cf t ∂W2) for Proposition 1 to the
computation of H(Cf ).

We use a discrete representation of the environment, and
construct a graph, G, by placing a vertex in every discrete cell
and by establishing an edge between the vertices of adjacent
cells. From such a graph we can construct an H-augmented
graph, GH (for keeping track of the homology invariants), or
an h-augmented graph, Gh (for keeping track of the homotopy
invariants), as described in [5].

While the graph, G, itself can be quite arbitrary, for sim-
plicity we used a uniform 8-connected discrete representation
(see Figure 4(b)) of the environment for all our simulations
and experiments.
A. Planning in Joint State-space

The problem under consideration is to plan optimal trajec-
tories that would take a given initial cable configuration, Ci,
to a separating cable configuration, and the robot 1 reaches
the left (or right) edge of W , while robot 2 reaches the right

Cf
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1f 2f

∂W2

ζ2 ζ3

ζ4

ζ5

ζ6

ζ1

r3b1
b2 b3

r1r2 

Ci

1

(a) The rectangular environment with
the goal of the robots being the left
(cyan line) and right (magenta line)
boundaries. ∂W2 does not intersect
any of the rays (all of which point in
the positive Y direction).

u1

u'1

u2
u'2

h
h' ... ...

(b) Robots 1 and 2 navigating on
copies of graph, G, formed by uni-
form discretization of configuration
space. Change in the h-signature of
the cable due to transitions within the
graph is also illustrated.

Fig. 4. The environment and its discretization.

(or left) edge. In the first approach we plan trajectories in the
joint state-space of the two robots. A graph, J = G × G, is
defined as the graph Cartesian product of two copies of G.
Thus, for every pair of vertices, u1,u2 ∈ V (G), a vertex in
V (J ) is of the form (u1,u2). We are given an initial vertex
in the joint state-space, (ui1,u

i
2), and an initial configuration

of the cable (up to homotopy) in form of the h-signature of
the cable, hi (which, as defined earlier, is a reduced word).

We define an augmented graph, Jh, such that a vertex
in this graph contains the additional information of the h-
signature of the cable that is being carried by the robots. This,
in essence, is similar to the H-augmented graph construction
detailed in [5]. Thus the initial vertex in the graph is vi =
(ui1,u

i
2, h

i), which contain the information about the initial
positions of the robots and the h-signature of the initial cable
configuration, hi = h(Ci). A transition of the robots from
(u1,u2, h) to (u′1,u

′
2, h
′) will mean (due to Proposition 2)

that the h-signature of the resultant cable configuration is
equal to h′ = h(−τ2) � h � h(τ1) (recall, ‘�’ is concatenation,
followed by reduction), where τ1 and τ2 are trajectories taken
by the robots for the transition (see Figure 4(b)). Thus, for each
edge [(u1,u2) (u′1,u

′
2)] ∈ E(J ), the vertex (u1,u2, h) is

connected to neighbors (u′1,u
′
2, h(
−−−→
u′2u2)�h�h(

−−−→
u1u

′
1)) (where,

[a  b] is used to indicate an edge in edge set, E(G), from
vertex a to b, and

−→
ab is the curve/line segment that constitutes

the edge.
−→
ba is the same curve but with opposite orientation).

We choose the optimization objective to be the sum of
the length of the robot trajectories. Thus, the cost of the
edge [(u1,u2, h) (u′1,u

′
2, h�h(

−−−→
u1u

′
1)�h(

−−−→
u′2u2))] ∈ E(Jh)

is chosen to be the sum of the lengths of the edges
[u1  u′1] and [u2  u′2] in E(G). For this cost
and with the left and right boundaries as goal,
an admissible heuristic function is f(u1,u2, h) =
min ((u1,x − xl) + (xr − u2,x), (u2,x − xl) + (xr − u1,x)),
which is a lower bound on the cost to reach a goal from
(u1,u2, h) (where, uj,x is the X coordinate at a vertex uj).

Starting at (ui1,u
i
2, h

i) we thus keep expanding the ver-
tices in the graph, Jh, using a search algorithm (we use
Dijkstra’s [11] or A* [17] since they are complete, optimal
and deterministic). A vertex (u1,u2, h) is deemed as goal if



u1 ∈ ∂Wl and u2 ∈ ∂Wr (or vice-versa), and if h∗(h) +
H(∂W2) (= h∗(h)) satisfies the condition of Proposition 1
(i.e., it is a separating cable configuration).

Planning in the joint state-space gives the flexibility of easily
incorporating additional constraints like inter-robot collision
avoidance, communication constraints, etc.

B. Decoupled Planning: A Distributed Approach
While the approach of planning in joint state-space is

complete and optimal, it suffers from the obvious drawback
of being slow and inefficient since the graph, J , is very
large and is of high degree, being a discrete representation
of a 4-dimensional space. However, it is possible to decouple
the searches for the two robots in two copies of Gh (the h-
augmented graph of G, described next), and run those searches
parallely (parallel threads in our C++ implementation), com-
paring the solutions obtained from each parallel process as
they progress, and being able to conclude when the optimal
solution is found, and thus halting the threads.

The h-augmented graph, Gh, is very similar to the concept
of the H-signature augmented graph, GH described in [5], only
with the homology invariants being replaced by the homotopy
invariants. Corresponding to a given u ∈ V (G), there exists
discrete number of the augmented states, (u, h) ∈ V (Gh), for
each homotopy class of trajectories (with h-signature h) from
an initial vertex, ui, to the vertex u. Edges emanating from
(u, h) are thus of the form [(u, h)  (u′, h + h(

−−→
uu′))] ∈

E(Gh), corresponding to every [u u′] ∈ E(G). The cost of
such an edge is chosen to be the Euclidean length of

−−→
uu′. An

admissible heuristic function for this choice of cost, and with
goal as ∂Wl ∪ ∂Wr, is f(u, h) = min(ux − xl, xr − ux).

Thus, we start with two copies of the augmented graph, Gh,1
and Gh,2, in two parallel threads (that branch off from a main
thread), for robots 1 and 2. In robot j’s copy of the graph,
we start expanding the vertices from (i.e., initiate the open set
with) the vertex (uij , “ ”) ∈ Gh,j , j = 1, 2. We keep expanding
the vertices in the respective graphs, and keep storing a path
every time ∂Wl or ∂Wr is reached via a new homotopy class
for the robot (i.e. if (v, g) is expanded, with v ∈ ∂Wl ∪
∂Wr, then the vertex is bookmarked if the homotopy class
g is not same for any of the previously bookmarked vertices
for the robot). It is important to note that for each of the
robots such optimal paths with different h-signatures are found
in the order of their costs since we use an optimal search
algorithm (Dikjstra’s/A* [17]). Suppose for robot ‘j’ such goal
vertices are {(v1

j , g
1
j ), (v

2
j , g

2
j ), (v

3
j , g

3
j ), · · · } with costs of the

respective optimal paths c1j ≤ c2j ≤ c3j ≤ · · · , for j = 1, 2.
We define a partial order [27], 4, on R2, to compare the

cost of pairs of paths of robots 1 and 2. One obvious choice is
to compare the sum of the path costs: (α1, α2) 4 (β1, β2)⇔
α1+α2 ≤ β1+β2. However, one would desire that the task of
carrying the cable is evenly distributed among the two robots,
and not one of the robots end up traveling the most of the
distance while the other travels very little. For this, we choose
to minimize the maximum of the costs of the two trajectories
(rather than their sum). Thus, we define the partial order to be

(v1
1, g1

1)

(v1
2, g1

2)

(v1
a, g1

a)

. .
 .

(v2
1, g2

1)

(v2
b, g2

b)

. .
 .

. .
 .

. . .
(v2

●, g2
●)

Ci
1

2
. . .

. . .

(a) Optimal paths in different homo-
topy classes corresponding to goal
vertices (v1

j , g
1
j ), (v

2
j , g

2
j ), · · · ∈

Gh,j are found in parallel threads for
robot j = 1 (yellow) and robot j = 2
(green).

(b) A compatible combination of
paths (with end vertices (va1 , g

a
1) and

(vb2, g
b
2)) is such that the end points,

va1 & va2 , lie on the opposite edges of
W , and h∗((gb2)

−1�h(Ci) � ga1) sat-
isfies the condition of Proposition 1.

Fig. 5. Decoupled and distributed planning: Optimal paths with different h-
signatures found for the two robots in parallel threads, and costs of compatible
pairs are compared to find the optimal compatible pair.

(α1, α2) 4 (β1, β2) ⇐⇒ max(α1, α2) < max(β1, β2), or,(
max(α1, α2) = max(β1, β2) and

min(α1, α2) ≤ min(β1, β2)
)

which we call the sorted lexicographic order.
Thus, as the main thread of the program receives the two

sequences of optimal paths to the left/right boundaries with
different h-signatures from the two different threads, it keeps
checking them in pairs. A pair, (va1 , g

a
1) and (vb2, g

b
2), is

deemed ‘compatible’ (Figure 5(b)) if the corresponding final
cable configuration (whose h-signature, by Proposition 2, is
equal to (gb2)

−1� h(Ci) � ga1) is a separating configuration.
That is, due to Proposition 1, a pair is compatible if h∗((gb2)

−1�
h(Ci)�ga1)+H(∂W2) is a vector with first r components ±1
and rest zeros, or last b components ±1 and rest zeros. We
keep record of the most optimal compatible pair (i.e., one with
lowest (ca1 , c

b
2), where comparisons are made using ‘4’).

Say at an instant the most optimal pair has cost (c∗1, c
∗
2).

Since the optimal paths with different h-signatures are found
in order of there costs, if robot j finds a path such that its
cost is greater than current value of max(c∗1, c

∗
2) (or, if we

were using the sum of the pairs in defining the partial order,
then c∗1+ c

∗
2), we can say for sure that none of the paths to be

discovered for robot j after that point can be part of a more
optimal pair. Hence we stop the search for robot j. When the
searches for both the robots end, the current optimal pair is
the global optimal one.

V. SIMULATION RESULTS

We implemented the search in the joint state-space as
well as the decoupled search in C++ programming language
with ROS integration, and used A* search algorithm. All
computations were performed on a system with dual-core
processor with clock speed 2.6 MHz and 4 Gb memory.
Throughout this paper we consider an uniform discretization
of the environment for simplicity. However, the techniques
developed in this paper is not restricted to any specific
discretization scheme or even a specific search algorithm. A



(a) Planning in the joint state-space took
4250s. The sum of the costs of two tra-
jectories is 65.598 discretization units.

(b) The distributed decoupled plan-
ning gives result with the same opti-
mal cost, but takes about 2s to run.

Fig. 6. A simple 30×30 environment with r = b = 3. The green & yellow
are the trajectories of the robots. The rays emanating from ζj are also shown.
The dark gray segment indicates the initial cable configuration.

more detailed discussion on the generality of the technique
can be found in [5].
A. Joint State-space Plan

The search in this 4-dimensional environment is pro-
hibitively expensive for large environments. Figure 6(a) shows
the result in a simple environment, 30 × 30 discretized, and
with 3 objects of each type. The search took about 4250 s and
expanded 1484999 vertices in Jh. Figure 6(b) shows the result
obtained for same problem, but using the decoupled planning
(and using sum of the cost of the trajectories for defining the
partial order, 4, for being consistent). The result has the same
optimal cost as the joint state-space planning, but took less
than 1 s with 19144 and 19593 vertices being expanded in
Gh,1 and Gh,2. All objects were inflated to avoid collision.
B. Decoupled Planning

In this section we present results obtained using the de-
coupled, distributed implementation. The sorted lexicographic
order was used for ‘4’. Figure 7(a) show the plans obtained
for two robots in a 100 × 100 discretized environment. The
planning took about 1.3 s, and expanded 39764 and 40066
vertices in the graphs of the two robots. Figure 7(b) shows the
result in a much larger (400 × 400 discretized) environment.
The planning time for this case was 490 s, with 1086182 and
1079670 vertices being expanded.
C. Dynamic Simulation and Fast Re-planning

So far we have planned the trajectories with the assumptions
that the object remain stationary as the robots follow the
planned trajectories. However, in a practical implementation,
where the objects will be free to move on the surface, the
interaction between the cable and the objects will change the
configuration of the environment. Consequently there comes
the need for re-planning. For the purpose of testing this
scenario we build an accurate real-time dynamic simulation
platform for the cable (modeled as a serial chain) and freely
floating disk-shaped objects on a fluid. Using Lagrangian
mechanics we developed the equations of motion with real-
istic modeling of drag forces [4], and modeled the contacts
using linear complementarity conditions [1]. We use a simple
feedback (PD) controller to make each robot follow the paths
generated by the planner. See [1].

Instead of solving the entire problem every time the envi-
ronment changes, we invoke a re-planning algorithm whenever
two objects exchange the order of the X coordinates of their

(a) The planned trajectories in a
100× 100 discretized environment.

(b) The planned trajectories in a
400× 400 discretized environment.

Fig. 7. Decoupled, distributed plans. Initial cable is shown in gray/black.
Trajectories are in green and yellow.

representative points (i.e., the rays emanating from ζj cross
each other) or one of the planned trajectories become invalid
(due to an object moving on top of it). Suppose g1 and g2
are the h-signatures for the trajectories lying ahead of the
robots (i.e. the part yet to be traversed) just before one of
the triggers for re-planning happens. Set g′j = gj , j = 1, 2. If
the trigger was caused due to switching of the X coordinates
of two representative points, we interchange the positions of
the corresponding letters in the words wherever they appear
side-by-side. We thus re-plan trajectories for the robots in
Gh,j , j = 1, 2 (starting at vertex (pj , “ ”), where pj ∈ G
is the current vertex position of robot j) with the constraints
that the new trajectories need to have h-signature of g′j .

Since we know the target h-signature, it is possible to
construct a more efficient, yet admissible, heuristic function
than before for performing optimal search using A* algorithm.
We consider the vertex (u, h) in the h-augmented graph.
Suppose the representative points corresponding to the letters
appearing in h−1 � g′j is ζσ1

, ζσ2
, · · · , ζσm

. It is obvious that
the remaining part of a valid trajectory after (u, h) will have
to cross each of the rays emanating from these ζσk

in this
order (besides possibly crossing others that will cancel out).
Thus the following heuristic function is a lower bound of the
cost (i.e., admissible) for reaching a goal state,

f ((u, h)) =

∑m−1
i=1 |ζσi+1,x − ζσi,x|+ |ζσm,x − xg|

+

{
f8(u, ζσ1), if uy < ζσ1,y,
|ux − ζσ1,x|, otherwise

where f8(u,v) =
√
2min(|ux−vx|, |uy−vy|)+

∣∣|ux−vx|−
|uy − vy|

∣∣ is an admissible heuristic for a 8-connected graph.
Figure 8 shows the simulation result. Figure 8(a) shows the
initial configuration of the system. As the objects move and
the map change, the planned paths of robot are re-computed
(shown by green curves in Figures 8(b)-(e)). We are able to
successfully separate the red objects from the blue ones.
D. Experimental Results

We are in the processing of conducting a field experiment
for validating the planner using two Autonomous Surface
Vessels (ASV) at Puddingstone Reservoir in San Dimas, CA.
The two ASVs are identical, each around 2 m long and 0.8
m wide, capable of speeds up to 1.6 m/s, using two electric
thrusters and a rudder for control. Both are equipped with
a GPS, an IMU with integrated compass and an onboard
computer for control. The two ASVs have a 40 m long
floating rope attached between them with periodically spaced
markers on it for increased visibility and to use as fixed
sampling points. Buoys (the objects to be separated) are placed
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Fig. 8. Dynamic simulation for separation of objects. The gray curve is the cable, with black dots marking robots at its ends. Green curves are the planned
trajectories. Magenta curves are the robot footprints. Red & blue disks are the rigid freely-floating objects. See http://youtu.be/GyCn-8yDzO0 for video.

in the water and anchored in place in an area 50 m ×
50 m, and their approximate locations recorded using GPS.

Fig. 9. Experimental setup showing
the ASVs. See http://youtu.be/GyCn-
8yDzO0 for video.

To record the experiment,
particularly the position and
shape of the rope, a camera,
in an adjustable tilt mount,
was mounted on top of a 30
ft mast which stood on shore
close to the experiment area,

overlooking it. Figure 9 shows the experimental setup.
VI. CONCLUSIONS

In this paper we present a formal mathematical description
of the problem of planning and control for a flexible cable
towed by two robots so as to separate two types of objects
in a planar environment. We develop a graph search-based
implementation, and distribute the computation for efficiency.
We demonstrate the working of the algorithms through simu-
lations, and the practical applicability of the method using a
complete dynamic simulation. Experiment with real robots is
under progress and results will be presented in a succeeding
journal paper.
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