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1 Extended Abstract
Search-based techniques have been widely used in robot path planning for finding optimal trajecto-
ries in configuration spaces. They have the advantages of being complete, optimal (up to the metric
induced by the discretization) and efficient (in low dimensional problems), even in complex environ-
ments. Continuous techniques, on the other hand, lending concepts from differential and algebraic
geometry and topology, have the ability of exploit specific structures in the original configuration
space and help in solving a host of different problems that rarely come under the scope of graph-
search based techniques. The main objective of this thesis is to propose certain ideas and methods
that will let us bring these two separate techniques under one umbrella.

The first contribution of the thesis lies in the characterization of the topology of the configura-
tion space and the solution using applications of discrete algebraic geometry and discrete algebraic
topology. Search-based techniques ignore the continuous properties of the underlying configuration
space and the solution trajectories. Thus, we define differential forms whose integral reveal metric
and topological information about the solution path. For example, the volume 1-form (i.e. length)
integrated along the edges of the search graph yields the total length of the path. Similarly other ap-
propriately defined 1-forms allow us to establish equivalence classes of trajectories (e.g., homotopy
classes) and use it to guide the search. We show how to find trajectories that are constrained to lie
in specified homotopy classes or that avoid other specified homotopy classes.

The second contribution of the thesis centers around the determination of optimal trajectories for
specified metrics. Trajectories found by discrete graph representations and searches suffer from sub-
optimality induced by the discretization. However there are certain metric spaces (a trivial example
being the Euclidean metric) in which we can conveniently construct certain types of graphs (e.g.,
the visibility graph) in which the optimal trajectory on the graph is also the optimal trajectory with
respect to the metric. Our goal is to establish the existence of such special metric spaces and define
conditions under which we can transform a given non-Euclidean metric space into such special
metric spaces.

Our third contribution is to use search techniques to partition the configuration space to facilitate
multi-robot tasks. We show how lending concepts from dual simplices discrete graph representations
can be used to efficiently compute a weighted volume of any subset of the configuration space and
hence develop a search technique for creating partitions of the configuration space. In particular,
we illustrate the computation of Voronoi partitions with applications to multi-robot exploration and
coverage of unknown or partially known non-convex environments.

Finally, we address the curse of dimensionality that is inherent in path planning for multi-robot
systems. One of the main drawbacks of graph search algorithms is that with increase in the dimen-
sionality of the configuration space, the number of nodes and edges in the graph increase exponen-
tially. This poses a major challenge for finding optimal paths in high dimensional configuration
spaces using graph search techniques. While gradient descent approaches scale much better with
the dimensionality of the configuration space, these methods suffer from local minima, especially
in non-convex environments. However, multirobot problems endow a special product structure to
the configuration space allowing us to decouple robot directions and parallelize the search. Such
decompositions can let us a combination of graph search methods and gradient descent algorithms
in complementary directions. We demonstrate how such decompositions are particularly suitable for
multi-robot path planning problems with communication constraints.
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2 Brief Literature Survey
Robot path planning is probably one of the most extensively studied problems in robotics [21]. There
has been extensive research on path planning with a variety of constraints such as communication
constraints [1], dynamics and environment constraints [23] and time constraints [17].

Despite being mostly an uncharted research area in robotics, constraints imposed by equiva-
lence relations like homotopy often appear in path planning problems. For example, in multi-agent
planning problems [36, 20], the trajectories often need to satisfy certain proximity or resource con-
straints or constraints arising due to tasks allocated to agents, which translates into restricting the
solution trajectories to certain homotopy classes. In exploration and mapping problems [9], agents
often need to plan trajectories based on their mission or part of the environment they are assigned
for mapping or exploration, and hence restrict their trajectories to certain homotopy classes. Motion
planning with homotopy class constraints have been studied in the past using geometric approaches
[16, 18] and probabilistic road-map construction [30] techniques. Such techniques suffer from com-
plexity of representation of homotopy classes and are not immediately integrable with standard
graph search techniques. While comparing trajectories in different homotopy classes and finding
the different homotopy classes in an environment is possible using such techniques, optimal path
planning with homotopy class constraints is not achievable in an efficient way without a invariant
that is not additive function of trajectories. Moreover, most of such methods in robotics literature are
primarily restricted to 2-dimensional configuration spaces. We hence propose an additive invariant
for a homotopy-like equivalence classes of trajectories which can be incorporated into graph-search
based algorithms for finding least-cost paths in Euclidean configuration spaces independent of the
geometry of discretization, cost function or search algorithm. While technically the equivalence
relation that we use is different from the exact notion of homotopy [6], it serves as a good practi-
cal tool for robotics planning problems where homotopy constraints arise naturally. The study of
equivalence classes of sub-manifolds of high dimensional complex and real manifolds is not new.
The generalized Residue Theorem in high dimensional complex manifolds [15] and Clifford algebra
[12] are highly developed along similar lines. Homology theory [19] has been highly developed
for identification of homology classes of sub-manifolds in arbitrary topological spaces. Another
recent development in the study of equivalence relations between manifolds is cobordism theory
[24, 25]. Cobordism is a much broader equivalence relation, and forms the basis for surgery theory.
In the mathematical development of our method [6] we extensively use some of the concepts from
cobordism theory.

For a given arbitrary metric space, one can attempt to immerse or embed it in an Euclidean metric
space. However, in general, if the dimensionality of the given metric space is same as the Euclidean
space in which we are trying to embed it, one may not be able to find an isometric embedding. In
the 2-dimensional version of the problem, interesting exceptions are parabolic Riemann surfaces,
which can be transformed into the flat Euclidean metric using conformal mappings [31], thus can
be isometrically embedded in R2. The flatness of Euclidean metric space lets us compute geodesics
and check their intersections with significant ease, hence exploit notions like visibility for solving
many motion planning problems. Otherwise, finding geodesics between two points in arbitrary
metric spaces can be an computationally expensive, especially for utilizing it for visibility-based
techniques. Results obtained in the Euclidean space can then be transformed back to the original
metric space of the problem. An interesting and significant result of similar interest is the C∞

Embedding theorem due to J. F. Nash [26] which states that any n-dimensional metric space can be
isometrically embedded in a Euclidean space of dimension no greater than n(3n+ 11)/2.

The problem of path planning also forms an important sub-set of the problem of exploration and
coverage of environments. A common approach toward exploration is frontier-based exploration
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where control directions seek to minimize entropy or uncertainty in the robot pose or map [34]. In
[33], the authors propose an exploration strategy with feedback control laws that maximize infor-
mation gain by considering uncertainty in both the robot pose and map. A multi-robot exploration
strategy is presented in [10, 32], where the robots coordinate to determine targets best served by
each robot that maximize the information gain for the team of robots. A common coverage control
approach is through the definition of feedback control laws defined with respect to the centroids
of Voronoi cells resulting from the Voronoi tessellation of an environment. In [11], the authors
propose gradient descent-based individual robot control laws that guarantee optimal coverage of a
convex environment given a density function which represents the desired coverage distribution. By
modeling the information and entropy of the environment as a metric of the space we utilize graph
search-based approaches for achieving both exploration and coverage.

In context of multi-robot planning with constraints, distributed optimization is an indispensable
and well-investigated approach for tackling the dimensionality of the configuration space. Task allo-
cation for multiple robots [14] using auction-based solutions [13], separable optimization problems
[3] with linear constraints using techniques based on dual decomposition [29, 3], and solution to sim-
ilar problems using augmented Lagrangian type methods [2, 27] have been used for solving simple
classes of large constrained optimization problems using iterative methods. However such methods
are limited to problems with linear constraints, rely on convexity of cost functions, or provide no
guarantee on optimality due to auction-based approaches. We investigate a distributed implementa-
tion of a separable optimization problem with non-linear constraints arising from coupling between
pairs of robots.

3 Work done so far
Below is a brief review, along with references to relevant papers, of the work done so far.

3.1 Planning with Homotopy class constraints
The motivation of this sub-problem arises from goal-directed path planning with homotopy class
constraints for robots in Euclidean configuration spaces. There are many applications in motion
planning where it is important to distinguish between and consider the different homotopy classes
of trajectories. Two trajectories in a configuration space are homotopic if one trajectory can be
continuously deformed into another without passing through an obstacle, and a homotopy class is
a collection of homotopic trajectories. In this section we consider the problem of robot exploration
and planning in Euclidean configuration spaces to identify and classify different homotopy classes
and plan trajectories constrained to certain homotopy classes or avoiding some others. We desire the
methods we develop be independent of the discretization scheme, the cost function or geometry of
the environment, so that it can be .

3.1.1 The problem in 2 dimensions

In the first part of this work [5] we solve this problem for two-dimensional, static environments using
the Cauchy Integral Theorem in concert with incremental graph search techniques (Figure 1). The
robot workspace is mapped to the complex plane and obstacles are modeled as homotopy equivalents
of poles of certain complex analytic functions (Obstacle Marker Function) defined on this plane.
The Residue Theorem then allows an efficient way of representing homotopy classes of trajectories
using the line integral of the Obstacle Marker Function over the trajectory in a complex plane. Using
the proposed representation, we have shown that homotopy class constraints can be directly weaved
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Figure 1: Least cost trajectories in different homotopy classes in a 2-dimensional configuration
space with obstacles.

with graph search techniques for determining optimal path constrained to certain homotopy classes
or forbidden from others. We have proved the optimality of the method and have experimentally
demonstrated its efficiency, versatility and several applications.

3.1.2 The problem in 3 dimensions

An immediate extension of the above described problem is to plan in 3-dimensional configuration
spaces with similar constraints [7]. In a 3-dimensional Euclidean space the notion of homotopy
classes can only be induced by obstacles with genus one or more, or by obstacles stretching to
infinity in two directions. Upon performing some construction on the obstacles, we can create certain
1-dimensional closed loops inside the obstacles that we call skeletons. We model those as current-
carrying conductors or wires in a 3-dimensional Euclidean space. This construction immediately
lets us compute a virtual magnetic field induced due to the current in each skeleton using the Biot-
Savart’s law from electromagnetism. Thus, for any given robot trajectory, we can compute a line
integral of the virtual magnetic fields using the Ampere’s law, giving us a homotopy-like class
invariant (h-signature) for the trajectory. Once again, being an additive function, h-signatures can
be efficiently incorporated into graph search techniques for,

i. exploring different homotopy classes in an environment (Figure 3(a)), and

ii. determining optimal path constrained to certain homotopy classes or forbidden from others
(Figure 3(b)).

The configuration spaces we use to demonstrate the proposed method are those of static 3-
dimensional obstacles (X − Y − Z configuration space) and dynamic 2-dimensional obstacles
(X − Y − Time space).
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Figure 2: The Biot-Savart’s law and the Ampere’s law can be used for identifying homotopy classes
of trajectories in 3-dimensional configuration spaces.

Strictly speaking, this equivalence relation under consideration is homology rather than homo-
topy. However in our analysis we used certain concepts from cobordism theory rather than homol-
ogy to formally define the equivalence relation. Since trajectories in different homology classes are
guaranteed to be in different homotopy classes as well, the fact that the invariant we developed is
a homology invariant does not effect the problems where we attempt to explore multiple homotopy
classes using the method described above. However, given a set of h-signatures, planning with ho-
motopy class constraints may not result in the desired result under certain pathological cases since
what we really imposing are the homology class constraints. However, in most practical cases, the
fact that trajectories of robots are homeomorphic (homeomorphic to [0, 1]), and with the assump-
tion that obstacles in real 3D environments rarely form links or braids, planning using the method
described above with given h-signatures constraints, give us plans with the desired homotopy class
constraints as well.

3.1.3 Generalization and extension to higher dimensions

From the previous discussions, it is not difficult to see an underlying connection between the Residue
theorem from complex analysis and the Biot-Savart law and Ampere’s law from electromagnetism.
Both triy to prescribe an equivalence relation for 1-dimensional manifolds (curves) in an Euclidean
space punctured by some other manifolds. In fact, it is also easy to find a similar connection to
Gauss divergence theorem, which prescribes equivalence relation for surfaces, when the Euclidean
3-space is punctured by certain points (Figure 4). Upon further investigation it can be concluded
that the equivalence relation underlying these laws is same as the equivalence of homology in punc-
tured Euclidean spaces. However, as mentioned before, in our investigation, we used concepts from
cobordism theory to define the equivalence relation under study.

Thus, in the final part of this problem we seek to investigate this equivalence relation, obtain
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(a) Exploring 10 distinct homotopy classes. (b) Plan in the complementary homotopy class of
the least cost path.

Figure 3: An environment with 7 unbounded pipes.
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Figure 4: The Cauchy Residue theorem can be applied to (a), Ampere’s law to (b), and Gauss
Divergence theorem to (c), for defining an equivalence relation for the manifolds ω. There is an
underlying connection between these different cases.

a unified theory for it, and generalize it to higher dimensions [6]. In particular, we consider the
D-dimensional Euclidean space, RD, with certain (D − N)-dimensional compact, closed and ori-
entable sub-manifolds (which we call singularity manifolds and represent by S̃) removed from it.
We define and investigate the problem of finding a homotopy-like class invariant (χ-homotopy) for
certain (N − 1)-dimensional compact, closed and orientable sub-manifolds (which we call candi-
date manifolds and represent by ω) of RD \ S̃. We determine a differential (N − 1)-form, ψS̃ ,
such that χS̃(ω) =

∫
ω
ψS̃ is a class invariant for such candidate manifolds. We show that the for-

mula agrees with formulae from Cauchy integral theorem and Residue theorem of complex analysis
(when D = 2, N = 2), Biot-Savart law and Ampere’s law of theory of electromagnetism (when
D = 3, N = 2), and the Gauss divergence theorem (when D = 3, N = 3), and discover that the
underlying equivalence relation suggested by each of these well-known theorems is the χ-homotopy
of sub-manifolds of these low dimensional punctured Euclidean spaces. We have described numer-
ical techniques for computing ψS̃ and its integral on ω. Finally, we discuss its application to robot
path planning problem, when N = 2, and extend the method for computing least cost paths with
homotopy class constraints using graph search techniques to high dimensional Euclidean configura-
tion spaces. This in turn allows us to plan in the 4-dimensional configuration space with dynamic
3-dimensional obstacles (X − Y − Z − Time space) with homotopy class constraints.
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The notion of χ-homotopy has apparent connections with singular and cellular homology theo-
ries [35] and the De Raham cohomology [22] theory. However in our analysis we have mostly used
the cobordism theory [24, 25] for development of the said differential form and the invariant. We
are currently investigating the underlying connection of such an approach with the more standard
homology and cohomology theories.

3.2 Metric information using graph search techniques – Voronoi Tessellation
in Non-convex and non-Euclidean metric spaces Using Graph Search

A graph is essentially a simplicial 1-complex whose dual describes a discretization of the config-
uration space. That is, each node of the graph is associated with a discretization cell (typically
its centroid). This fact gives us a way of computing measures for the configuration space. In the
simplest case one can compute a weighted volume of the configuration space by expanding nodes
of the graph using a Dijkstra’s kind of algorithm. While a more interesting application involves a
wave-front like algorithm for partitioning the environment among multiple robots.

We apply this concept to multi-robot exploration and coverage in unknown non-convex envi-
ronments [8] using an entropy-based metric to capture uncertainty in the environment. We use a
search-based algorithm for computing a geodesic Voronoi tessellation in discrete environments. A
pseudo-centroid of the Voronoi cells given a tessellation of a discrete environment, permits the appli-
cation of centroid-based robot control laws for cooperative coverage and exploration in a distributed
manner (Figure 6).

3.3 Metric Transformation for Efficient Optimal Planning in Environments
with Nonuniform Metric

Graph-search based planning methods are well-suited for non-uniform metric spaces with
holes/punctures. The only thing that a non-uniform metric space makes different for the graph
laid down on the environment is that the edge costs become function of the location of the edges
instead of just their lengths. However, in order to capture the non-Euclidean metric of the environ-
ment suitably, the discretization needs to be sufficiently fine. For example, one may use an uniform
or unstructured fine discretization, but not a visibility graph. But this condition eventually fires back
since the least cost path in the graph created by fine discretization of an environment is most often
not the least cost path in the continuous metric space. For example, in Figure 1(a), the discretiza-
tion scheme used was an uniform 8-connected grid-world (i.e. an uniform discretization into square
cells, with the nodes of the graph placed at the centroid of each cell, and then each node connected
to their 8 neighbors). As a result, segments of the trajectories were constrained to head in directions
that are multiples of 45◦. Thus, the trajectories we obtain, although least cost paths in the graphs,
are not the shortest in the original metric space. In a Euclidean metric setting one can use certain
post-processing and smoothening methods to straighten the paths using notions of visibility. Like-
wise, in Euclidean metric one can employ a visibility graph, hence obtaining paths that are truly
least cost, as demonstrated in Figure 1(b). But visibility graphs or post-processing and smoothening
cannot be employed easily in non-Euclidean metric spaces with punctures.

Thus one question that we would like to answer: Given a non-Euclidean metric space (with
holes/punctures), is it possible to find a transformation that transforms the non-Euclidean metric to
a Euclidean metric space? Or a metric space where we can exploit methods using visibility with
ease? If it can be done, we can set up a visibility graph or perform post-processing and smoothening
in the transformed space, and/or plan the least cost trajectory in the transformed space. By the
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(a) t = 0 (b) t = 500

(c) t = 1000 (d) t = 1600

(e) t = 2600 (complete map built) (f) t = 2750 (convergence)

Figure 5: Exploration and coverage of a large unknown environment. Green indicates uncertainty.
The blue lines indicate the boundaries of the Voronoi tessellations of the 4 robots.

definition of transformation of metric space, the least cost path in the transformed space, when
inverse-transformed back to the original space, will give the least cost path in the original space.

As we will discuss in a bit, one class of transformations that gives partial answer to this ques-
tion are the conformal mappings. All metric spaces that transforms into a Euclidean space under
some conformal mappings, or the metric spaces that are derived from Euclidean spaces using con-
formal mappings, can be conveniently transformed into Euclidean spaces. Such metric spaces are
essentially the parabolic Riemann surfaces [31]. It is a well-known fact that holomorphic (complex
analytic) functions define such conformal maps.

3.3.1 Problem definition in 2 dimensions with isotropic metric, and its partial solution

We will first consider the problem in a 2-dimensional isotropic metric space homeomorphic to R2.
Let us denote a subset of this space (which is of interest to us) by S, and assume it is equipped with
the metric tensor g (which, by the assumption of isotropy, is a scalar multiple of identity). We are
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also provided with a chart, C, (i.e. coordinate system) such that a point in S is uniquely represented
by the pair of values (x, y) ∈ R2. The metric and the chart are such that the matrix representation
of g in the chart C is given by,

g(x, y) =

[
m2(x, y) 0

0 m2(x, y)

]
= m2(x, y)

[
1 0
0 1

]
(1)

where the function m is given/known. Thus the length/cost of a differential element is given by
ds = m(x, y)

√
dx2 + dy2. Thus, m can be interpreted as a cost map which acts as a scaling on the

Euclidean length cost of a Euclidean metric.
The problem under consideration may now be posed as the problem of finding a chart C that is

related to C in the following way,

x = x(x, y) , y = y(x, y) (2)

such that the matrix representation of the metric tensor g in C is the identity matrix. That is,

gkl =
∂xp
∂xk

∂xq
∂xl

gpq = δkl (3)

where, in the second term in the above equation, summation is implied over repeated subscripts
(Einstein summation convention) and the subscripts 1 and 2 are to indicate x and y respectively for
notational convenience. δkl is the Kronecker delta.

It is a known fact [28] and not difficult to show that if we can find a holomorphic (complex
analytic) function, f , such that ‖f(x + iy)‖ = m(x, y) everywhere in S, then the transformation
defined by

x(x, y) = Im

(∫
f(z)dz

)∣∣∣∣
z=x+iy

+ κ0

y(x, y) = ∓ Re

(∫
f(z)dz

)∣∣∣∣
z=x+iy

+ κ0 (4)

for some arbitrary integration constant κ0, satisfies the condition in (3).

3.3.2 An Illustrative Example

In this section we present an illustrative example of the above discussion. We assume m(x, y) =√
x2 + y2 is the given cost map. Then we immediately obtain by observation, f(z) = z. Thus,

x(x, y) = Im(z2/2) = xy and y(x, y) = −Re(z2/2) = (y2 − x2)/2. We note that this map is
invertable in the positive quadrant.

Figure 6(a) shows a mesh color coded with the value of m2. The labels on the axes represent
the values of x and y. The mesh is then transformed into the barred coordinate system to obtain the
figure in 6(b). The color of the mesh is left same as the original one for ease of comparison.

An 8-connected grid-world is laid down in the original coordinates (Figure 6(a)) and a graph
is hence formed. The white trajectory in Figure 6(a) demonstrate the least cost path for a given
start and end coordinates in the 8-connected grid graph. As one can observe, the direction of the
tangents on this path are restricted to multiples of π/4, which invariably leads to suboptimality. In
an Euclidean setting one way of reducing the sub-optimality is to post-process the path by replacing
portions of the path by line segments such that the segments do not intesect obstacles. However in a
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Figure 6: The black dots indicate obstacles. Figure (a): White path is the least cost path in the
8-connected grid graph planned in the unbarred coordinates. Figure (b): The same white path is
shown in the barred coordinates. Figure (b): The red path in the barred coordinates is obtained
by greedy post-processing of the white path. Figure (a): The red path in unbarred coordinates is
obtained by inverse transformation.

non-uniform metric like this, line segments are no more the geodesics. Hence this post-processing
scheme is not possible in the unbarred coordinates.

However once we have transformed the white path to the barred coordinates (Figure 6(b)), the
metric is Euclidean here. Hence we can now use the above-said post-processing technique in this
coordinate. Thus, as indicated by the red path in Figure 6(b), we obtain a piece-wise straight seg-
ments in the barred coordinates, which is the least cost path. Performing an inverse transformation
on this red path gived the corresponding least cost path in the unbarred coordinates (red path in
Figure 6(a)).

3.3.3 Existence of f for a given m

Suppose we are given an arbitrary cost function, m, defined on S. Can we always find a corre-
sponding holomorphic f such that ‖f(x + iy)‖ = m(x, y) on S? As a first attempt one may try to
numerically fit a complex analytic function to satisfy the given m. However, very quickly one can
see that such an approach would result in vigorous oscillations in f , and in fact is not possible for
general m.

One can see that on ∂S, if we fix the real part of f , immediately from the Schwarz integral
formula f gets determined over all of S. From this it seems unlikely that one can find a f that
satisfies ‖f(x + iy)‖ = m(x, y) on the entirety of S. Moreover, for the given metric, one can
compute the scalar curvature of the space. If it is not identically zero, one cannot find an isometric
embedding of the metric space in R2.
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(d) Converged solution, k =

216

Figure 7: Demonstration of convergence towards global optimal solution with progress of iterations.
In each iteration only 1 robot updates its own trajectory. As we cycle through the robots, we increase
the penalty for violating the rendezvous constraints.

3.4 Dimensional Decomposition – Distributed Optimization using Separable
Optimal Flow

So far in our discussion we have encountered certain pros and cons of graph-search based path
planning. However the biggest challenge that one encounters in discretization, graph creation and
search problem is that the number of nodes, average degree and hence the complexity of the search
algorithm increases exponentially with the dimensionality of the configuration space. The problem
becomes evident in multi-robot planning problems where the configuration spaces of the individual
robots cannot be decoupled due to presence of complex inter-robot constraints.

In this work [4] we try to exploit certain structures in the high dimensional configuration space
and the constraints that prevent complete decoupling of the problem into lower dimensional planning
problems, and hence use graph search techniques in concert with gradient ascent type of techniques
in order to solve a class of constrained optimization problems. This particular class of optimization
problem turns out to be well-suited for solving multi-robot path planning problem in cluttered non-
convex environments with pair-wise constraints on their trajectories.

The intuitive concept behind the algorithm is that we start off by solving the global unconstrained
problem, which is completely decoupled and hence can be solved as a bunch of lower dimensional
problems. Then we gradually increase the penalty weights for violation of the constraints which
are modeled as soft constraints, in a way not unlike dual and Lagrangian decomposition methods.
We show that in every iteration of the algorithm, if we increase the penalty weights along certain
specific directions (Separable Optimal Flow Direction and Ascent Direction) we are guaranteed to
attain optimality and convergence in the limit (Figure 7). In order to deal with obstacles/punctures
in the configuration space of individual robots, we need to do an exhaustive search in the different
homotopy classes of trajectories. The tools developed in [5, 7, 6] can be used for that purpose.

4 Future Direction

4.1 Primary directions
4.1.1 Further investigation of χ-homotopy

As discussed earlier, for the present analysis we have used cobordism theory for defining the equiva-
lence relation under consideration and designing the class invariants. We would like to re-formulate
this equivalence in terms of more standard homology and co-homology theories.
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We have introduced the notion of χ-homotopy for sub-manifolds of punctured Euclidean spaces.
However there are definitive needs of extending this notion to more general manifolds. For example,
the configuration space of a robotic arm with n joints is typically a n-torus. We hence plan to extend
the theory to general punctured manifolds.

4.1.2 Investigation of mappings that can transform a non-uniform metric spaces into spaces
where the notion of visibility can be exploited

As we have discussed, certain isotropic metric spaces let us use conformal mapping to transform
them into Euclidean metric space. A Euclidean metric space allows us to use simple notions like
visibility graph, or perform post-processing on trajectories found by graph-search algorithms on
graphs created by fine discretization, in order to obtain trajectories that are optimal not only on the
graph, but also in the metric space when inverse-transformed back to the original space.

Now we ask the question: What is so special about the Euclidean metric that lets us use such
convenient techniques? The answer is essentially the ease of computation of the geodesic connecting
two points. The notion of visibility is generalized to existence of geodesic segments between points
in a punctured general metric space. More precisely, the determining factor for using visibility-
based methods is the ease with which we can check whether the segment of a geodesic connecting
points p1 and p2 intersect the segment connecting pA and pB . Typically in an arbitrary metric
space the computation of the geodesic passing through two given points is highly non-trivial. One
can employ a method like shooting method for solving the Geodesic equation posed as a boundary
value problem. However, in general, such methods are expensive and often practically infeasible.

Thus, our aim for this component of the proposal is two-fold:

i. Identification of metric spaces along with methods for each of them that allows us to check
with considerable ease whether for a given set of points p1,p2,pA and pB , the geodesic
segment p1p2 intersects the geodesic segment p1p2.

ii. Identification of classes of metric spaces that can be transformed into one of the above men-
tioned special metric spaces, and the study of such transformations, for use of visibility-based
methods.

In particular, we would like to investigate which metric spaces can be embedded in Euclidean spaces
of same dimension (not necessarily isometrically) such that the geodesics are mapped injectively to
straight lines in the Euclidean space (not necessarily isometrically). A non-trivial example being the
hyperbolic plane and the Beltrami-Klein model of its embedding in R2. For such embeddings, the
notion of visibility follows quite easily and naturally.

4.2 Other possible directions of investigation
4.2.1 Computation of generalized centroid

One of the challenging aspects of the problem in [8] was the computation of generalized centroid.
Generalized centroid for a general non-convex region V is defined as,

Cgen
V = argmin

p∈V

∫
V

f(d(q,p))φ(q)dq (5)

where φ is a weight function, and d(q,p) is the shortest path (shortest Euclidean length) lying
in V and connecting q and p. For a convex region this reduces to the simple formula CV =
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∫
V

qφ(q)dq∫
V
φ(q)dq

. However for general non-convex regions this becomes infeasible to compute for real-
time applications. In [8] we used certain workarounds. However we desire to investigate further
into the problem to determine if there can be any better systematic way of computing generalized
centroid, possibly approximately using graph-search based techniques.

4.2.2 Investigation of the condition for the existence of Separable Optimal Flow

Upon introducing the notion of “separable optimal flow” [4], we have shown that following sepa-
rable optimal flow direction and ascent directions in an iterative fashion leads towards the global
optimal. However we have not commented on or derived the conditions under which such directions
can be guaranteed to exist. Thus, one important direction of future work will be to investigate such
conditions if they exist. Another direction in which we would like to do some investigation is to see
if we can generalize the constraints beyond the pair-wise restriction.

5 Conclusions
In this thesis we have described and proposed a rich collection of tools that attempts to create an
amalgamation between graph-search based techniques and techniques from geometry and topology
for solving robotics problems. We believe such studies and their further development will also
help to bridge some of the still-existing gap between the active robotics community and the rich
mathematics literature on subjects like algebraic geometry, algebraic topology, differential geometry
and geometric topology.
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6 Proposed outline of dissertation
Based on the completed and proposed work, the table below described the potential outline of the
contents of the final thesis.

Proposed outline:
1. Introduction and literature review

2. Equivalence relation as constraints in planning problem

i. Introduction

ii. In 2 and 3 dimensions

iii Generalization and extension to higher dimensions

iv On non-Euclidean configuration manifolds

3. Voronoi tessellation and other measure-based techniques

i. The search-based approach for non-convex regions

ii. Application to coverage and exploration

iii. On computation of generalized centroids of non-convex regions

4. Metric transformation for exploitation of visibility-based techniques

i. Why visibility-based techniques?

ii. The simplest case – conformal maps

iii. The Beltrami-Klein model of the hyperbolic spaces, and the Real Projective space

iv. Generalization

5. Dimensional decomposition of configuration space for efficient planning

i. Motivation and challenges

ii. Separable optimal flow and its properties

iii. Application to distributed multi-robot path planning with pair-wise constraints

iv. On existence of separable optimal flow directions

v. Generalization of the constraints

6. Discussions and concluding remarks
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A. Subhrajit Bhattacharya, Maxim Likhachev and Vijay Kumar (2011) A Homotopy-like Class In-
variant for Sub-manifolds of Punctured Euclidean Spaces [Under Review]. Discrete & Compu-
tational Geometry, Springer. arXiv:1103.2488 [math.DG]. (link)

B. Subhrajit Bhattacharya, Maxim Likhachev and Vijay Kumar (2011) Identification and Repre-
sentation of Homotopy Classes of Trajectories for Search-based Path Planning in 3D [Accepted
- To Appear]. In Proceedings of Robotics: Science and Systems. 27-30 June. (link to draft PDF)

C. Subhrajit Bhattacharya, Hordur Heidarsson, Gaurav S. Sukhatme and Vijay Kumar (2011) Co-
operative Control of Autonomous Surface Vehicles for Oil Skimming and Cleanup [Accepted
- To Appear]. In Proceedings of IEEE International Conference on Robotics and Automation
(ICRA). 9-13 May. (link)

D. Subhrajit Bhattacharya, Nathan Michael and Vijay Kumar (2010) Distributed Coverage and
Exploration in Unknown Non-Convex Environments. In Proceedings of 10th International Sym-
posium on Distributed Autonomous Robotics Systems. 1-3 Nov, Springer. (link)

E. Subhrajit Bhattacharya, Vijay Kumar and Maxim Likhachev (2010) Search-based Path Plan-
ning with Homotopy Class Constraints. In Proceedings of The Third Annual Symposium on
Combinatorial Search. Atlanta, Georgia, 8-10 July. (link)

F. Subhrajit Bhattacharya, Vijay Kumar and Maxim Likhachev (2010) Search-based Path Planning
with Homotopy Class Constraints. In Proceedings of The Twenty-Fourth AAAI Conference on
Artificial Intelligence. Atlanta, Georgia, 11-15 July. (link)

G. Subhrajit Bhattacharya, Vijay Kumar and Maxim Likhachev (2010) Distributed Optimization
with Pairwise Constraints and its Application to Multi-robot Path Planning. In Proceedings of
Robotics: Science and Systems. Zaragoza, Spain, 27-30 June, MIT Press. (link)

H. Subhrajit Bhattacharya, Maxim Likhachev and Vijay Kumar (2010) Multi-agent Path Planning
with Multiple Tasks and Distance Constraints. In Proceedings of IEEE International Conference
on Robotics and Automation (ICRA). Anchorage, Alaska, 3-8 May. (link)

I. Paul Vernaza, Maxim Likhachev, Subhrajit Bhattacharya, Sachin Chitta, Aleksandr Kushleyev
and Daniel D. Lee (2009) Search-based planning for a legged robot over rough terrain. In
Proceedings of IEEE International Conference on Robotics and Automation (ICRA). 12-17 May,
pages 2380-2387. (link)

J. Subhrajit Bhattacharya, Sachin Chitta, Vijay Kumar and Daniel Lee (2008) Optimization of a
Planer Quadruped Dynamic Leap. In Proceedings of 2008 ASME International Design Engi-
neering Technical Conferences (IDETC). New York City, NY, 3-6 August. (link)
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