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Approaches in Path planning problem in robotics

Continuous approaches

Discretize approach

Graph Search-based
N DNNINNTN

goa
)
o [ Navigation Function SHEREEE
: (Koditschek, Rimon, “90)  Global Vector Field
, (A. Hsieh, '07)
d*a7 dz? dat
* start dr2 + Iwﬁ/’r?? =0
/ c Solve Geodesic Equation
(for optimality)
Use graph search algorithms i. Difficult constructions for general
To find optimal path in graph environments.

ii. Susceptible to non-convergence, slow
convergence or getting stuck at local
minima (due to obstacles/holes).

iii. Difficult to guarantee optimality
(geodesic between two points, and
with holes in environment, is difficult
to flnd) 3

i. Fast, efficient, robust.

ii. Complete (will find solution if exits)

iii. Indifferent to non-convexity, holes in
the environment

iv. Works well for non-Euclidean metric

v. Globally optimal (in the graph)



Graph search based approach is the preferred,
robust solution, but....

* Discretization + graph construction discards all topological
information about the environment.

* By restricting to the graph we also lose a lot of information
about the original metric in the underlying space.

» Size of graph, and complexity of search algorithms increase
exponentially with dimension of configuration space.

The overall big question:
Can we use some of the ideas from continuous approaches
to make up for the drawbacks of search-based approaches?



Overview

. Planning with Topological constraints — Homotopy
& Homology class constraints

. Incorporating Metric Information using search-
based techniques — Voronoi Tessellation in Non-
convex Environment with Non-uniform metric

Dimensional Decomposition — Distributed
Optimization using Separable Optimal Flow

. Transformation for Efficient Optimal Planning in
Environments with Non-Euclidean Metric
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Overview

1. Planning with Topological constraints — Homotopy
& Homology class constraints



Motivation: Homotopy Classes of Trajectories

e N © R

Trajectories in different homotopy

Different homotopy classes in 3D
class of trajectory in 2D

Applications in robotics

Flight Through Windows

Planning trajectories in specific
homotopy class (e.g. trajectory
through a window)

D. Mellinger, et al.

Deploying multiple agents

e.g. in tracking dynamic agents
through multiple occlusions 7
J. Shi, et al.




Homotopy Vs. Homology — Similar equivalence relations

lllustration of equivalence of homotopy lllustration of equivalence of homology
Since there is a continuous sequence of Since there exists an area 4, the
trajectories between 7, and 7,. boundary of which is 7, U-z,.

Example where
trajectories are
homologous, but
not homotopic.

» Similar & related concepts, but subtly different.

* Homotopy is intuitive, but computationally
difficult. Homology is more abstract, but
computationally favorable.

 Homotopic implies homologous, but converse
may not always be true!




1A

Part-A
(Our Contribution)

* Design an efficient representation of
homology classes of trajectories in 2D and 3D.

* Use the representation for :

— Finding least cost paths with homology class constraints
(solve the constrained optimization problem).

— Explore different homotopy classes in a 2/3D configuration
space.

* Integrate the representation with graph-
search based planning algorithms.

o Plan for optimal cost paths, for arbitrary cost function (not necessarily
Euclidean distances), arbitrary discretization schemes (Uniform,
unstructured, triangulation, visibility graph, etc.) using any graph
search algorithms (Dijkstra’s, A*, D*, ARA*, etc.).



1A

Incorporating topological constraints in
planning problems

Key idea: Given a D-dimensional configuration space, £, how to
find a differential 1-form, w € Q0 (C), such that for any

given trajectory, 7, the value of the integral H(t)= | w

can be used to identify the homology class of 7. T
L Additivein t

Can be used efficiently in graph search-based planning:

n, in “closed” list (expanded)
— next node to expand is n, ....

Easy to compute H (i1, 1,) from H (n,,_n,):
\ Child node

Parent node H(nstartnz) — H(nStartnl) + LS

e
1 ]

n start

Analogous to cost computation:
C(nstartn2) = c(nstartnl) + COSt(e)

10



1A

Solving the problem on

Two Dimensional Plane
Key ideas:

1. Represent the configuration space by a Jz"l__(g%’l) Imy
complex plane £2(2)

. : : Flz)=| ¢ ,

2. Construct an analytic function with - . /

singularties at “representative points”. ' ’
fN(Cz)
Z—CN

A R4
N7

3. Leverage Cauchy Integral and Residue
“Representative points”

Theorems to design an additive H(r) = / F(z)dz inside obstacles.
T |_'_l

complete homology class invariant.

Applications & examples:

2g

Can be used for graph-
search based planning with
H-signature constraints.

4
I1s 25

d) w =

Homotopy class exploration Planning with Planning with Cort ;I e ®
. . i . anning on a
in a large environment H-signature constraints AT TR e Visibility Graph

(1000x1000 discretized) (visibility constraint) O et e



1A

Solving the problem in Three Dimensional
Euclidean Space with Obstacles

e 7

Key ideas:

1. Exploit theorems from Electromagnetism:
Biot-Savart’s Law Ampere’s Law /
140 (x —r) x dx o
B(r) = 10 / Xz = / B() - dl = oL
mJs [x—rl cb—
where, B: Magnetic field vector ) (diff. 1-form)

Uo: Magnetic constant (can be chosen as 1 with proper choice of units)

2. Model the skeleton of each genus-1 obstacle as a current carrying conductor

ﬂ

Arbitrary
obstacles

g

Close unbounded obstacles Virtually decompose Construct skeleton of genus-1
genus > 1 obstacles obstacle and model that as a

. . .. current carrying conductor
3. Leverage the integral of Ampere’s law to design an additive

complete homology class invariant:

Virtual Magnetic Field due to ith skeleton h-signature of trajectory
1 (x —r) x dx 7‘[(7‘) :[hl(’?‘), hQ(T), Cee hM(T)}T
S

e = where, () = [ Bu(h)-al



1A

Results for the 3D case

Exploration of multiple homotopy classes: Planning with H-
signature constraint:

Exploration of 4 homotopy classgs
in presence of 4 SHIOs:

Exploration of 10 homotopy
classes in presence of 7 SHIOs

Exploration of 4 homotopy
classes in presence of 2 SHIOs

Planning in X-Y-Time
configuration space:
20





Part-B

Using tools from Algebraic Topology:

* Establish theoretical justification behind the
previously described constructions:

— Justify the replacement of obstacles by “representative
points” or “skeletons”.

— Establish a connection between the proposed differential
1-forms, linking number and homology classes.

— To show that using the formulae mentioned, we in fact
computed complete invariants for homology classes of
trajectories.

* To generalize the method for >3 dimensional
Euclidean space with obstacles.

We will discuss the intuitive concepts. More
details of the proofs are in thesis.

14
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Replacements for Obstacles '

O_

A basic result from algebraic topology:

If S'is a subspace of O such that
inclusion map, i:S —O, induces
isomorphisms Hp_n(S) = Hp_n(O)

(e.g. deformation retracts)

[N=2 for all robot
path planning
problems.]

Question: What can we say about the inclusion 7 : (RY —O) — (R —§) ?
In particular, is the induced map, i..x_, : Hy_1(R” —O) — Hy_;(R” — S), an isomorphism?
— it is, for “nice” spaces like orientable manifolds.
[Exact conditions: compact, locally contractible, orientable]

What can we do when there is no deformation retract to the required dimensional S ?
Example: A hollow (or thickened) torus in D=3.

It is sufficient to choose generating
(D-N)-cycles of homology group of O
as the S.

15



Linking Number 18

Note: In the 2D case, the map p is
simply a translation to the origin

What we had previously done by taking the
integrals is compute linking number between
closed loops w and the representative points
(in R2) or skeletons (in R3), represented by S.

* Definition of linking number is derived
from definition of intersection number:
L(w, S) =1(2,9), st.,w=0%0
[Seifert, et al., ‘80]
* A formal algebraic definition requires

Side-note: Uniqueness of linking number: that we define a map, p: R¥x§ — RS,

[A.Dold, ‘95]
¢ S
Computation of linking number:
91' Take advantage of the map p — the co-domain of p is much simpler
and have well-known closed but non-exact differential (D-1)-forms:
65 If 770 € QdDgl(IR% — {0}) s.t., [70] is a generator of

H i (R —{0}), the linking number is given by,
L(w, S) = / P (n0) / o ) 16

®XxS “p(w x S)




Complete Invariant for Homology class

)
Theorem (simplified statement):

If S'is a path-connected manifold (of the appropriate
dimension), then the linking number L(w, S) precisely
tells us about the homology class of w in (RP- S) —it’s
a bijective map.

Thus, a complete invariant
for homology class of w is,

/w XSp*(no) Wy = /S p* (o)

EAncbiairttfoumamI@;vrﬂﬁrﬂeﬂN'Fea cérsice of 7,

L"Tll(X) diao + (/"Tiz (X) diq xy — S

| Ui (x) = 5= (-1) (1) 7 =
. 1 (;(?1 — Sl) d;{:Q — (;(:Q — .5'2) d;(:l ' 2m |X o S|—
2m [x — 8|7 U2 (x) = o (—1)2 25241 () 2222
1 1 27 |x — S|
= . Im (: ~s. d::) 5 5
_ S,
R Y S
where, k=1 j=1
j#k
UF(x:8) = (—1)k7-1Hs<k) / Gr(x —x') day Adah - A a2l A Adal
JS

The required differential 1-form
that can be integrated over w :

1B

1 @y — s
27 |x — S[?
1 @y —sy Lo
o7 |x — S|2)
Keduces to
) known
dJlj formulae
upon
plugging
D=2,3
17



Multiple Path-connected § B
S = Uiz 9 p

i—1 1 Q/— S5
Theorem:

Hy_1(RP = 8) ket Hy—1(RY = 5)
is induced by direct sum of inclusion maps i : (E” — S) — (EP — S,,)

%

This implies that the H-signature (complete
invariant for homology class) is simply,

Vs, 2 R3
Vs s : o
_ W) i e . I R B,
M= |" R . L "
JT . { . 2 . ; )
* > Q | S £ |
\ S3 / ..S 7\‘::) y _
-WSm . \_)__,-// N 53
(a) D=2, N =2 (b) D=3,N =2 () D=3N =3

Achievement: Found a way to compute homology class of (N-1)-dimensional closed
manifolds embedded in D-dimensional Euclidean ambient space with punctures.

* Unification of theorems/laws from Complex analysis, Electromagnetism and
Electrostatics.

* Generalization to higher dimensional spaces. 18



1B

Exploration of homotopy classes in a
4-dimensional configuration space —
X-Y-Z-Time — Moving obstacles in 3D

Recall the X-Y-Time example:

Future direction:

Similar ways of determining homology classes of trajectories in

punctured non-Euclidean spaces (e.g. configuration space of a

robotic arm), and use search-based approaches for that. 19





2.

Overview

Incorporating Metric Information using search-
based techniques — Voronoi Tessellation in Non-
convex Environment with Non-uniform metric

20



Metric in Search-based
Robot Planning Problems

* Optimal goal-directed path planning
(A*, Dijkstra’s, other search algorithms)
— well-understood, already discussed.

* Coverage problems
* Exploration problems

21



Related Work (coverage) ;

Coverage problem in robotics:

Lloyd’s Algorithm and its Continuous Time Version

S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory, vol. 28, pp.
129-137, 1982.

J. Cortes, S. Martinez, T. Karatas, and
F. Bullo, “Coverage control for mobile sensing
networks,” IEEE Trans. Robot. Autom.,
vol. 20, no. 2, pp. 243-255, Apr. 2004.

Lloyd’s Algorithm in non-convex environments

(With polygonal obstacles:

Gradient descent approach for moving towards generalized centroid)

L. C. A. Pimenta, V. Kumar, R. C. Mesquita, and G. A. S. Pereira, “Sensing and
coverage for a network of heterogeneous robots,” in Proc. of the IEEE Conf. on Decision
and Control, Cancun, Mexico, Dec. 2008, pp. 3947-3952

(Geometric, difficult to compute in non-polygonal environment, not suited for exploration.)
22



Part A

Coverage in Non-convex Environments with non-
Euclidean Metric

e \Voronoi Tessellation, and
* Lloyd’s algorithm,
N
non-convex environments with
possibly non-Euclidean metric

23
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Assignment for Exploration and Coverage
(known environment)

2A

Voronoi Tesellation:

Vi(P)={qe€Q|d(q,p:) <d(q.p,),Yj # i}

V\’\ metric

Q

In convex environments and Euclidean
metric: Tessellation boundaries are |

perpendicular bisectors of lines pf-rpendicular_
joining the robots bisector of p;p,
In non-convex  p, P
environments: o
high metric

Boundary of Voronoi
tessellation between

p; and p,

DU EPRANCEUCAGAIN metric

d is the region |
Geodesic Distance



HEEN -

Search-based algorithm for Computing
Geodesic Voronoi Tesellation

% % % Discretize the environment,
and form a graph, ¢

. \< For each agent, i, expand nodes of g,

\é{ starting from p;,
using Dijkstra’s Algorithm

_ Result: We obtain g(q) —
the Geodesic distance of each
node q in g from p,

Geodesic Voronoi Tesellation:
Vi = {q € V(Ga)l|gi(q) <g;(q),Vj#i}

Easy to incorporate non-Euclidean metric d —
weigh the edges of the graph with the metric.

2A



Mathematical basis for -
Lloyd’s Algorithm

Lloyd’s Algorithm for
Optimal Coverage:

Minimize

(Cortes, et al., MED ’02)

f. metrlcﬁ— weight/density function
Z/ f(d(a,p:))¢(a)da  [where, flx)=x"]

Measure of how
bad the coverage
is

General solution In c uclidean
W=, pi = ammin | f(da,pojo(ayia | e (@)
pi €(V:UOV;) centroid — o
aq
generalized need to solve .
tessellation this directly Control |aw (follow gra ent of ).

In non-convex tessellation, non-

Euclidean metric ( d ).
Solution is called “generalized centroid” - extremely

difficult to solve 26



Lloyd’s Algorithm via
Direct computation of Gradient

Instead of finding the minima of J{ and hence construct a control law,
we try to find the gradient of J{ and follow the gradient.

Gradient of H : ap% / é)—f qap@))cf)(q)dq

=2 / d(p;, q)np@-qu(q)dq
Vi —
Tangent vector at p;, to the

geodesic connecting p; and q
(multiplied by a constant that
does not depend on q).

Convenient for the graph-search based
discrete approach:

Control law: _ B _
oy * Geodesics are compued by the Dijkstra’s algorithm —
= k5 =2k [ dp@)o(ampgda gves us iy
Pi Vi * The integration can be computed during the

tessellation algorithm — very efficient! 27

2A



Example: Lloyd’s algorithm in
non-convex environment

Notes:

* The metric (d) is Euclidean.

* Intensity of green is the
weight/density function (@)

* We used “Power Voronoi
Tessellation” in order to

incorporate finite robot radii.

28
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Part-B

* Use the tools developed for distributed coverage
and exploration of unknown or partially known
non-convex environments.

29
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Unknown/Partially known environment

2B

Shannon Entropy assigned to each node, q, in graph:
e(q) = p(q) In(p(q)) + (1 — p(q)) In(1 — p(a))
— a measure of uncertainty/lack of knowledge.
Objective:
* We want to explore an unknown/partially known
environment (i.e. reduce entropy)
* Maintain good coverage of the environment during and
after exploration.

Overall idea:
* Maintain and update entropy map through sensor data and
inter-robot communication.
e Control law: Use the Voronoi tessellation & Lloyd’s algorithm
for non-convex environment and non-Euclidean metric
o Entropy-weighted metric (non-Euclidean)
o Entropy as weight function. 30



Result

3 robotsina 170 x 200
discretized environment.

Each iteration (time-step) takes
about 0.3 s.

(C++ implementation running
on a single processor)

Results use a slightly different version of the
control law than what described earlier.

31
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ROS implementation —

truly distributed (multi-

implementation

2B

thread)

Realistic simulation of sensors,
robot kinematics,
communication.

4 robots in a 1000 x 783
uniformly discretized
environment.

Parallel (multi-thread)
computation wherever possible.

Main thread runs at ~1Hz for

each robot (note: all threads run
on a single processor).

32




Overview

3. Dimensional Decomposition — Distributed
Optimization using Separable Optimal Flow

33



Distributed Optimization with Pairwise
Constraints and its Application to Multi- .
robot Path Planning

A motivational example:

;Er""’ ?
r ]

Cluttered, non-convex environment
— discretization and graph-search
based techniques desired for fast,
optimal planning.

-
.
\'\

i
[T

J—=;rljd Robot configuration spaces coupled
L _ L by constraints
Unconstrained solution Optimal plan satisfying

communication constraints — size of joint statespace increases

exponentially with N (number of
robots).

34



How to efficiently and optimally solve this

huge problem? 3
Dimensional decomposition!

P(go?:-en: Seﬁn:_tlorf\- {mi,...,Aay}t=argmin, > ., nc(m;)
oal directed navigation o .
N heterogeneous robots) S.t. Qij(ﬂ'l-, 71}) — O (e.g., time-parametrized distance constraint)

k1 : k+1 k i i
[Subproblem.ﬂ'r"' = argmin,_ [cr(m«) + > 1N i @W(W@. ’Wr)ﬂ « Solved using discrete

graph search for ith robot.

How to increase the weight vector so as to guarantee Separable optimal flow:

; = ey U (W + eV, W) — &, (W, W

i. convergence, ii. optimality? W ()_1-11-45%-, s
WEHL — W* 4 * ComputeStepDirection(W", {n}" 1) ﬂf"_l - 77;'6 Y j#r and, Vij =0, ¥{i,j} such that r ¢ {i, j}

ix rob lanning i vel iof q - Ascent direction:
§|x robots p anning iteratively to satisfy rendezvous constraints S Vi (LW, T (7)) > 0
in an empty environment: (i}epN

¥ o8

To Fa O o W W 1 W g 0.
0 N ao\Ah W& w0 W iNFuw N i
S1 S2 S3  S4 S5 S6 ]
Iteration (k) = 0 Iteration (k) =1 Iteration (k) = 2 Iteration (k) = 12
Planning robot (r) = 1 Planning robot (r) = 2 Final converged solution

satisfying constraints

a0t
2 3 4 § 8 10k L E 4+ 05 8
]

1 2 3 4
1 "
070 ™ W 40 50 &0 70 B0 S0 100 O 10 20 30 40 & @ 70 B0 8 100 9 20 a0 4 50 a0 70 B0 0 im0

35



Definitions Theorems

NN _{1,2,--- N}
P = {{1,2},{1,3},--- ,{1,N},{2,3},{2,4},--- ,{N—-1,N}}
,P7N ={{Lrt, {r=Lrh{r+ Lok AN, 7}}

V and W are vectors with N(N-1)/2 elements

Forasmall €, Vis a Separable Optimal Flow Direction for * r at W iff: 1

U (W+eV,W) =W, (W, WU (W4 eV, W+eV) -V, (W, W+ €V) 3\ I

= (V)" [wD W, W) (ev) > 0 F oy — i

and, Vi; =0, V{i,j} such that r ¢ {¢,j} \‘\\‘1 r?.,-"'
(W) = argming,, [ 22 as(m)+ 30 WiQu(me,m) ] -

REN {kiyep® Vis an Ascent Direction at W iff:

W, (Wi, W) = ming, [(fr-(TTr)-l' Z n"l.A-rQA»r»(ﬁ;.»(W'z),Tfr)] Z Vi Qs (IL; (W), IL;(W)) > 0

{kr'}GT—";.\' {TJ}GPV

Theorem 1: If the Step Direction returned by procedure ComputeStepDirection at the k™ iteration of the
Algorithm, along with a small step size. 6 , define a Separable Optimal Flow at W* for W,. | V k, then V k

{mf,..., 7} = argming [Z NN C(ﬂ-z)_"Z{w}e'pNW Qz’j(ﬂ'iaﬂ'j)} cie m =TL(W"Y), Vi, k

Theorem 2: If the condition in Theorem 1 holds, and the Step Direction returned by procedure
ComputeStepDirection at the k™ iteration of the Algorithm is also an Ascent Direction at W, for all k,

then the Algorithm converges to an optimal solution, if one exists.

Theorem 3: If the functions ¢, and €2;; are differentiable up to second order, and ©(, 7)) is of the form
G, (r;— m;), where G; is continuous, smooth and even, then we can compute a Step Direction, if one

ex1sts that satisfy Theorems 1 & 2, at a given WX, i




Result

37




Additional complexity —
Introducing Tasks

* Each robot is given an
oy unordered list of tasks
SN (coordinates in space).

e = = == == - R gl
. e Determining the optimal order
w'! w? . .
of execution of the tasks is
Guakditecirenanggation often nontrivial
Viitto EAsks o neRRvEkRIned _ o
and execute tasks  ...especially in presence of

obstacles and constraints

38



The Task Graph

Anodeof Y :
3 = Bar({J1,J2,- - ,Jr}) isabinary sequence of M bits, with
1’s at the positions ji.79.- - , Jk

Take product of this graph with the graph G formed by discretization of environment
to obtain final state graph. 39



Results

2 robots

*4 rooms to explore for
each

*100x100 spacial
discretization

250 temporal
discretization
*Rendezvous to
exchange information

Joint state space: 250 x (100 x 100 x 24)? = 6.4 x 10'? = 6.4 trillion states
Individual state space: 250 x 100 x 100 x 24 = 4 x 107 = 40 million states

Planning time: 1311 seconds in 17 iterations (S"g!e processor
implementation)

40



Overview

4. Transformation for Efficient Optimal Planning in
Environments with Non-Euclidean Metric

41



Graph-search techniques are

well-suited for:

* Non-convex environments
* Non-non-Euclidean metrics

Motivation

BUT

Although the solution is least-
cost in the graph, it may not be
so in the original continuous
configuration space!

4

However, if the metric is Euclidean,
we can use visibility-based
approaches:

* Do post-processing

* Employ visibility graph

* Use theta-star algorithm [nash, et al.]
* Etc.

Difficult for non-Euclidean metric — not efficient to

compute geodesic connecting 2 arbitrary points.

y goal
iy &
L d -
L R
rReRel L R
OO R eREE 8 200
CRRERRERRRREEG B [
bR+ EEE RS EREEEST O NI X T
FE SRS RS LR R T R FEE S
FE S EEE RS EE SR ET BE FEE R+Es
* e o
o
% %% i
L
L e e
%% %% EX
%% %% %
pes start swwooo
o omm e 2 Faor, o
Question:

Given an arbitrary metric space, can we find a

transformation to a Euclidean metric space?

42



Motivating example: A flat space (zero curvature)

Mesh in criginal space
indi of m®

i 4
3
1 0 — 1 0
(2 a2 _
g= (" +)7) [ 0 1 } g [ 0 1 } \
Isotropic, but non- T(z.y) = Im(22/2) = z
) P ) () Im(z_ /2) _»19' Isometric embedding of the
uniform metric U(a,y) = —Re(2?/2) = (y* = 27)/2. metric space in Euclidean plane

This can be written as |z|*. This is hence a conformal map. This is the same metric spaces
with zero scalar curvature, being described by 2 different coordinate charts.

Relaxed question: Given a metric space, can we find a coordinate chart,
whose natural embedding in Euclidean plane maps geodesics to

straight lines (possibly non-isometrically)? 43



Non-isometric embedding into Euclidean space
with geodesics mapping to “straight lines”

The sphere (admits constant positive curvature metric)
Gnomonic projection

(Op) — ()

[1 . g } A coordinate chart maps geodesics in the
0 sin%(6) metric space to “straight lines” on the

herical metri . : :

(spherical metric) plane (i.e. geodesics using the usual
Euclidean metric on the plane), but non-
isometrically!

-- Orthogeodesic embedding

Hyperbolic Space (admits constant negative curvature metric)
Beltrami—Klein model:

* The whole hyperbolic plane is mapped to the interior of a circle
* Geodesics on hyperbolic plane maps to straight lines.

44



cost of moving an unit distance
along x—axix { = 1)

0.4 0.6 03

Cost of movfng an unit
distance along x-axis (=1).

cost of moving an unit distance
along y—axis ( = sin(x))

04 06 0.8

Cost of moving an unit distance
along y-axis (=sin(x)).

T

T = tan(x)cos(y)

y = tan(x)sin(y)

o
I\

o3
1

NV

Result with Ghomonic projection

The mesh in the barred coordinates

e

7

A
s




Result with Ghomonic projection

- . L ) _ optimal trajectory transformed from the bamed
Flanning in an uniform grid in the barred coordinates (red traj.) to the unbarred coordinates

followed by posi—processing (green trajectony)

46



Condition for Orthogeodesic embedding

. . . .. 2
Suppose we are given a coordinate chart consisting of X
coordinate variables x = (', 2°,--- ,2"V) and a
matrix representation of the metric, g
: . d2zi - dzd dak
Geodesic equation: S N e 1
az R q *
Condition for geodesics d2xl d22 . drt  dr2
being “straight lines”: a2 a2 | T O(x, %) ar  dr
(acceleration parallel to velocity)
Reduces to,
F;h(x) @j ek — Q(X?e) ej’ for every X € RN, [{31.{32."'] = R"\"
Final condition:
8pjk t 8ok — Cikp = UYi8kpt 0k8;p; Vp,J. k

Eliminate the NV unknown 6’s from the N*(N+1)/2 equations to
obtain the final conditions.

Future direction: Existence? How to find a orthogeodesic coordinate chart? 47



Major Future Directions

e Extend the ideas of planning with topological
constraints to non-Euclidean spaces with punctures (e.g.
robotic arms).

* To combine the problems of planning with topological
constraints and the problem of coverage/exploration in
non-convex environments with non-Euclidean metric.

e Study the conditions under which an orthogeodesic
embedding may exist, and how to find one, given a
metric.

48
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