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1 Introduction:

1.1 Stratified Workspace Manifolds:

Stratified manifolds are encountered in the configuration manifolds of many
robots. Some typical examples are the walking robots [4, 5]. The configuration
manifolds of such robots are in general high dimensional with some distinctive
features. The most important characteristic feature of stratified manifolds are
that they are filled with discontinuities [5]. These discontinuities give rise to
certain sub-manifolds which are essentially the boundaries of the workspace
manifold. These boundaries or sub-manifolds are known as strata [5]. The most
interesting feature of a stratified manifold is that the system is allowed to stay
only on these strata. That means even though the workspace of the robot is NW
dimensional, it is allowed to stay only on certain sub-manifolds of its workspace
whose dimension in general is NS < NW. However there is still a lot more to these
stratified manifolds. Even while residing on a stratum in a stratified manifold,
the flow of the system is allowed only along certain directions on the strata,
called leaves or foliages of the strata [5]. These foliations basically constitute
some subsets of the tangent space of the strata. The following example in
context to a quadruped robot will make the concept more clear.

Consider the example of a quadruped robot with each leg having three de-
grees of freedom. Thus we need 6 coordinates to define the position & orientation
g ∈ SE(3) of the robot’s body fixed frame, and 3 coordinates for the position
of the tip of each foot ri ∈ R3. Hence in general the configuration space of
the robot is 6 + 3 × 4 = 18 dimensional. We denote this workspace manifold
by W. However the topology of this configuration manifold is characterized by
discontinuities because of the facts like the robot is allowed to stay only above
the terrain surface and that the foot tips of the robot are allowed to stay inside
a limited workspace. This gives rise to the strata in the workspace. Consider
the simple stratum that arises because of the fact that the foot tips of the robot
cannot penetrate the terrain surface. We note that at any particular configu-
ration of the robot, at least three of its legs need to touch the terrain surface.
Hence we have four strata which are those sub-manifolds corresponding to which
one leg is not touching the terrain surface, while the other three are touching
the terrain surface. We denote the stratum corresponding to which the ith leg
is not touching the terrain surface by Si, i = 1, 2, 3 or 4. It is easy to note that
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the dimension of each Si is 18 − 3 = 15. This is because of the fact that a
leg touching the terrain surface will imply that the system’s degree of freedom
is reduced by 1. However the stratum which correspond to configurations for
which all the four foot-tips are touching the terrain surface is basically a subset
of the previously mentioned four strata. We denote this stratum by S0 and
its dimension is 18 − 4 = 16. It is not tough to realize that S0 actually forms
connections between the Si’s for i = 1, 2, 3 or 4. In fact we can write,

S0 =
⋃

i,j∈{1,2,3,4}
i 6=j

(Si ∩ Sj)

However it is to be noted that even within each of these strata there are more
discontinuities because of the fact that the foot-tips are allowed to stay only
within certain allowable regions relative to the robot’s body-fixed frame. More-
over if we consider the force constraints, we’ll find that even when three or four
feet are touching the terrain surface, not all configurations are allowed to keep
the reaction forces positive. But for the time being we simplify the problem by
ignoring these complications.

Now we add the further constraint that there is no slippage at the foot-tips.
This leads to the foliation of the strata. Let us consider a particular point on
Si, i = 1, 2, 3 or 4. Thus the ith leg is above the terrain, while all the other
three legs are touching the terrain surface. Had there been no ‘no-slippage’
constraints, the following types of motions and/or their combinations would
have been possible while staying on Si:

a. The robot could have slide along the terrain on the 3 feet that are touching
the terrain surface.

b. It could have stayed at one place and swing its body to attain new position
and orientation while keeping the foot-tips at the same place.

c. It could just have moved/swinged its ith leg in the air.

These basically constitute the tangent bundle of the stratum Si, i.e. the possible
directions in which the flow can take place.

However after we impose the no-slippage constraint, it is easy to note that the
motion ‘a’ is no more allowed. However the robot may perform the remaining
two types of motion while keeping its three feet touching the terrain surface.
This leads to foliation of the stratum. The directions along which now motion
is allowed are called the leaves/foliages of the stratum. At a particular point on
the stratum, they basically constitute a subset (not necessarily a subspace) of
the tangent space at that point. The foliation of the stratum thus constitute a
subset of the tangent bundle of the stratum. Similarly we can identify foliations
in S0 due to the no-slippage condition.

It is customary to denote the tangent bundle of the manifold Si as TSi [4,
5]. A particular leaf of the foliation of Si is in general denoted by ∆̄Si [5]. Since
Si has a dimensionality of 15, the tangent space at any point in it will be a 15
dimensional vector space. However the dimensionality of ∆̄Si is further reduced
by 3×2 = 6 since each of the 3 legs touching the terrain surface loose 2 degrees of
freedom that they were having before the foliation. Thus ∆̄Si is a 9 dimensional
space. However, as mentioned before, it should be kept in mind that all these
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manifolds and tangent spaces are marked by further discontinuities due to the
limited working range of the foot-tips relative to the robot’s body fixed frame,
and the force constraints.

As mentioned before, the strata Si, i = 1, 2, 3, 4 are connected to each other
via S0. It is thus evident that it would have been possible to move from one
stratum to another if there were no foliations of the Si’s. However after imposing
the no-slippage condition, we can still hope that the foliations ∆̄Si, i = 1, 2, 3, 4
will somehow be connected to each other via the foliations ∆̄S0. Thus now our
primary aim is to plan a path through these foliations to reach as close to our
goal as possible, but adhering to the workspace and force constraints all along.

Now we’ll try to provide a diagrammatic representation of the workspace
manifold. As it is evident, it is difficult to visualize such high dimensional
manifolds and sub-manifolds. Even more difficult it will be to represent them
on the paper. Thus we’ll simplify the manifold grossly and will use a very crude
2-3 dimensional representations just to highlight some characteristic features
of the workspace manifold. We will visualize the strata Si, i = 1, 2, 3, 4 as
2 dimensional surfaces, and hence the curves along which they intersect will
constitute S0. The tangent space at a point on the manifold Si will be the
tangent plane at a point on the surfaces representing it. Then a foliation will
be represented by a particular direction along the manifold in which the flow
can take place. The following figure illustrates these in a lower dimensional
representation.

SS1

SS2

SS3

SS4

∆SS0

∆SS1

∆SS3

Fig. 1: Schematic reduced dimensional representation of the stratified
manifold of a quadruped robot

It is to be noted that in the actual manifold all the Si, i = 1, 2, 3, 4 intersect with
each other, and the intersections essentially forms a common manifold S0. That
means S0 itself is a connected manifold. In the above figure the intersecting
curves between any two Si and Sj may be looked upon as foliations of S0. Thus,
even if all these intersection curves representing the foliations that make up S0

are connected, it may not possible to move directly from any of these curves to
another. Moreover the workspace & force constraints will induce discontinuities,
the result of which will be torn and broken manifolds with boundaries. Although
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the representation in Fig. 1 is quite inaccurate, later on we’ll use concepts from
it in planning our strategy for motion along the manifold.

1.2 Dynamics of walking vehicles:

The development of walking vehicles has been inspired by biological walking
animals [1]. It is known that animals which walk can travel over difficult ter-
rains with much agility which is rather difficult, if not impossible, for wheeled
or tracked vehicles. This possibility of dexterity has inspired the study and
development of walking vehicles. However the issues like complex dynamics,
large number of degrees of freedom, difficulty to control and energy efficiency
of such walking robots pose a major challenge in their design and development.
As we have just seen, the workspace manifold of walking robots are filled with
discontinuities and limitations in the directions along which motion can take
place. Thus motion planning in such manifolds is a rather challenging task.

The study of walking robots has been quite an old and extensive one. The
earliest of the walking vehicles were built during the middle of the 20th cen-
tury. The rapid development of computer technology and computational powers
assisted in the development of walking robots [1]. Although there are several
examples of successful development of hexapod, quadruped and even biped walk-
ing robots, their application has rather been limited by the specific natures of
the working terrain they are meant for, comparatively low energy efficiency and
challenges in the development of control systems. The present day industrial
application of walking robots is rather limited. Although a few domestic appli-
cations have been implemented, no suitable cost-effective industrial application
is yet in use. However in future, further development of walking robots and
computational systems may make them more applicable. Moreover it is inter-
esting to study the dynamics and workspace manifold of a system like that of
a walking robot and coming up with methods to control them. This motivated
us to take up this particular research topic for study.

The dynamics of a system with high degree of freedom like a quadruped
robot may be highly complex. However with suitable assumptions the problem
may be simplifies to a great extant. Assumptions like negligible inertia of the
legs are quite acceptable. Moreover, as we will discuss later, we’ll make the
assumption of a quasi-static model, hence ignoring any inertial forces on the
system. This will drastically simplify our system and will reduce it into a system
of 6 equations - 3 for forces and 3 for moments. The force constraints (that the
force system at the foot-tips touching the terrain surface should lie within the
allowed friction cone) are imposed as inequalities that need to be satisfied.

2 Relevant literature:

In [5] an extensive study on the nature of Stratified manifolds and Control tech-
niques for systems residing on such manifolds has been discussed. As described
before, stratified manifolds are those where discontinuities form an inherent
part of the manifold. The configuration manifold of our present system, the
quadruped robot, is such a manifold. This makes the issue of controllability in
stratified manifolds is a rather complex study because of the presence of the
discontinuities giving rise to the strata and foliations of the strata. Issues like
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controllability and controller design (motion planning) has been discussed in
great details in [5].

Similar discussions has been made in [4] where modular robots have been
studied in great details. Motion planning in Stratified manifolds has also been
discussed to some extent. Issues of trajectory generation and gait stability has
also been discussed in [5]. The dynamics of modular robots has been studied in
[4]. Lagrangian mechanics has been used to incorporate the dynamics as well
as the holonomic and non-holonomic constraints involved.

3 Overview of the problem and solution approach:

In our present problem we make the assumption of quasistatic model. Thus we
ignore all the inertia forces and inertia moments. This simplifies the system to
a great extent. The dynamics of the system now reduces to balance of forces
and moments. The fact that the configuration manifold is a stratified mani-
fold has been incorporated in a bunch of equalities and inequalities describing
the discontinuities and the directions of possible flow in the manifold and the
strata. Moreover throughout the problem we assume that the center of mass of
the robot coincides with the origin of the robot’s body fixed frame.
In the present problem we’ll primarily be concerned with determining a suit-
able flow path in the stratified configuration manifold to reach a target point,
starting from an initial point. Since the space is high dimensional and there
are constraint of moving along the leaves of the foliations in the manifold, de-
termining a global optimal path will be rather difficult. We have addressed
this optimization problem by separating it into local and global optimization
problems.

In the present work we have done a systematic study of the dynamics of a
quadruped robot with a target to develop an open-loop controller for the robot
for the purpose of motion planning. We have analyzed the quasistatic model of
a quadruped and addressed the issues like equilibrium of forces and moments,
friction constraints at the footholds, etc. Given a terrain with an initial and
target point we’ll come up with an open-loop controller for motion planning,
taking care of the foresaid issues and trying to attain some optimization in the
process. In order to attain some level of optimization we divide our problem
into two parts:

i. Local Planning: Given a trajectory near the surface of the terrain in the
3 dimensional physical space of the robot, we try to plan the motion such
that the center of mass of the robot follows the trajectory. At present
we have two versions of the way to deal with this problem. In the first
way we use a hard persuasion method, where we perform exact tracking
of the trajectory. Whereas in the second case we use a soft persuasion
method, where we relax on the condition of exact tracking, and instead
try to minimize the distance of the center of mass of the robot from the
given trajectory. While the first method is computationally less expensive,
the second method is more adaptive and robust. As we’ll discuss later,
the process of local planning consists of primarily two phases — moving
the body and placing foot.

ii. Global Planning: Once we are able to make the robot move along a given
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trajectory, we can calculate some costs associated with the trajectory. In
this part of the problem we try to make variations in the trajectory and
determine the one which has the minimum cost associated with it. As quite
evident, this process of global planning will be extremely computationally
expensive.

Our system consists of a rigid body (the body of the robot along with it’s legs)
which is in contact with the terrain surface at at least 3 points(the footholds).

Fig. 2: The Little Dog quadruped robot

The forces acting at these points include the normal reaction from the terrain
as well as the frictional force. In the local planning phase of the motion, it
is possible to move the robot body relative to a fixed foothold by varying the
joint angles of the legs (This basically corresponds to the flow along a leaf
of the foliation of the strata, ∆̄Si). In particular, given a set of footholds,
we can determine the joint angles required to attain a desired position and
configuration of the robot body (within the bounds in the configuration space)
by using inverse kinematics. Moreover if at some instant there are 3 feet in
contact with the ground, it is possible to change footholds by putting down the
fourth feet and subsequently lifting up one of the three feet that were previously
on the ground (this basically corresponds to the movement of the robot from
Si to Sj , i, j = 1, 2, 3, 4 via the connecting S0). Thus there are basically two
phases of motion corresponding to the flow along two different sets of foliations:
One is changing the position and configuration of the robot body by changing
the leg joint angles, but keeping the footholds fixed; The other being when the
footholds are being changed.
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4 Notations:

4.1 Notations for describing the configuration manifold:

W 18 dimensional configuration manifold of the quadruped robot.

Si Strata corresponding to which three feet are touching the surface of the
terrain and the ith foot is above the terrain surface.

S0 Stratum corresponding to which all four feet are touching the surface of
the terrain.

TSi Tangent bundle of stratum Si.

∆̄Si A leaf of the foliation of Si.

4.2 Coordinate systems, geometric parameters and con-
stants:

G The global frame of reference fixed to the terrain.

B The body fixed frame of the robot. The center of mass
of the robot body coincides with the origin of this frame.
(Refer to [6] for further details about the body-fixed frame).

Gr, Br The homogeneous component representation of vector r in
the global and body fixed frames respectively.

θi,j The angle of the jth joint of the ith leg, i = 1, 2, 3 or 4,
j = 1, 2 or 3. (Refer to [6] for details about the zero con-
figuration angles).

θmin
i,j , θmax

i,j The lower and upper bounds on the joint angles [6].

θnor
i,j Joint angles corresponding to a ‘normal’ configuration of

the leg joints. This is used later for defining some optimiza-
tion objectives.

ri,j ∈ R3 The position vector of a joint.

r0
i,j ∈ R3 The position vector of a joint at the Zero Configuration of

the legs, i.e. the joint angles being all zero.

rc Position vector of center of mass of the robot. The compo-
nent representation of rc is made in the global frame.

P Set of points that define the body of the robot. We approx-
imate the robot’s body as a polyhedron. Thus P is the set
of all the vertices of the polyhedron.

m Mass of the robot body. We ignore the mass of the legs.

g Acceleration due to gravity vector.
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4.3 State-space variables that parametrize the configura-
tion manifold:

g ∈ SE(3) The homogenious transformation matrix [7] describ-
ing the position and orientation of the robot’s body-
fixed frame measured in the global frame. (6 inde-
pendent variables)

ri ∈ R3 The position vector defining tips of each leg, i =
1, 2, 3 or 4. (3× 4 independent variables)

Ψ = {g, r1, r2, r3, r4} A particular configuration of the robot – a point in
the configuration manifold.

Ψ.χ or χ̃(Ψ) The component ‘χ’ of Ψ. Here ‘χ’ is either g or ri.

Ξ A collection/set of Ψ’s. Occasionally (in the hard
persuasion procedure) we may also include the infor-
mation about the λ corresponding to the rc of each
Ψ.

4.4 Algebraic Sets (inequalities) for implicitly defining the
allowed regions in the workspace — defining the dis-
continuities in the workspace manifold:

fT Defines the terrain surface. fT (r)

 > 0 if r is above the terrain surface.
= 0 if r is a point on the terrain surface.
< 0 if r is below the terrain surface.

ζi Defines the dextrous workspace of the ith foot. If Si is the set of all points
that the ith foot tip can reach at a particular position/configuration, g,

then we define, ζi(r)
{

> 0 if r ∈ Si

< 0 if r /∈ Si

4.5 Forces and Normals:

Fi Force acting at the ith foot-tip. This consists of both the normal reaction
and the friction forces.

ni The normal at the ith foot-tip. The normal or pseudo-normal at an
arbitrary point r in space is calculated as

[
∇fT

|∇fT |

]
r
.

∇sfT |r Smoothened pseudo-normal at an arbitrary point r. The smoothening is
performed by taking an weighted average of pseudo-normals over points
in the neighborhood of r.

µ The coefficient of friction between the terrain surface and the foot-tips.
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4.6 Variables and parameters used for motion planning:

Rτ A point on a given trajectory, τ .

λ Parameter that parametrizes a given trajectory. Thus
Rτ (λ) represents the parametrization of the trajectory
τ .

S = {s1, s2, · · · , sn} Gait step sequence for n steps. Essentially this specifies
the sequence of strata Si which the robot needs to follow
while moving to one strata to another via S0. Here sk

is the numeric index of the strata that the robot must
be on at the kth step.

4.7 Other notations and conventions:

SE(3) The Special Euclidian Group.

SO(3) The Special Orthogonal Group.̂ The hat operator that maps the 3 × 1 component vector
space to so(3) [7].

ε̃(g) The Compact Exponential Coordinate representation of any
g ∈ SE(3). We define this slightly different, but analogous
to the exponential coordinate representation of g. Given a

g =
[

R3×3
Gv3×1

01×3 1

]
, corresponding to the R ∈ SO(3) we

can obtain the unit vector along the axis of rotation and
the rotation angles (the exponential coordinates)[7], and
represent them by ω and ϑ respectively. Then we define
the compact exponential coordinate representation of g as

the 6× 1 vector given by ε̃(g) =
[

Gv
ϑω

]
.

R̃(g),ṽ(g),
ω̃(g),ϑ̃(g),
ϑ̃ω(g)

We represent the quantities R, v, ω and ϑ associated with
a particular g (as described above) as R̃(g), ṽ(g), ω̃(g) and
ϑ̃(g) respectively. Moreover we represent the vector ϑω

associated with g by ϑ̃ω(g).
We will sometimes use an alternative shorter way of rep-
resenting all the above mentioned quantities. For denoting
these same quantities we can write g.R, g.v, g.ω, g.ϑ and
g.(ϑω) respectively.

g̃(ε) The inverse of Compact Exponential Coordinate represen-
tation.
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5 Tools used for motion planning and optimiza-
tion processes:

5.1 Forward and Inverse Kinematics:

Figure 3, and the equations following it describe the Inverse and Forward Kine-
matics for a leg of the robot. Please refer to [7] for details of the computation
process. The numerical values for the different symbols mentioned can be found
from [6].

r i ,1
0

r i ,2
0

r i ,3
0

r i
0

Fig. 3: One single leg at the Zero Configuration

5.1.1 Forward Kinematics:

We define
ḡi,j = exp[B ξ̂i,jθi,j ] (1)

where,

ξ̂i,j =
[

ω̂i,j −ωi,j × r0
i,j

0 0

]
where ωi,j denotes [7] an unit vector along the axis of the jth joint of the ith leg
at the leg’s Zero Configuration.

Then we can find the position vectors of the joints and the foot-tips as
follows:

Bri,1 = Br0
i,1

Bri,2 = ḡi,1
Br0

i,2
Bri,3 = ḡi,1 ḡi,2

Br0
i,3

Bri = ḡi,1 ḡi,2 ḡi,3
Br0

i

(2)

Thus, knowing the θi,j ’s, we can find the ri’s. Hence we have performed the
Forward Kinematics. [Note that all the vector quantities are expressed as their
homogeneous components in the body-fixed coordinate frame.]

5.1.2 Inverse Kinematics:

We note that ri,1 always lie on the axes of ξ̂i,1 and ξ̂i,2. Hence, Bri,1 =
ḡi,1 ḡi,2

Bri,1. Again, Bri = ḡi,1 ḡi,2 ḡi,3
Br0

i . Hence,

| Bri − Bri,1 |=| ḡi,3
Br0

i − Bri,1 |

This enables us to use Paden Kahan Subproblem 3 [7] to solve for θi,3. Hence
ḡi,3 can be computed.
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Thus once ḡi,3 is known, we can use Bri = ḡi,1 ḡi,2 ḡi,3
Br0

i and Paden Kahan
Subproblem 2 [7] to solve for θi,1 and θi,2.

5.2 Computation of Forces:

The quadruped robot standing on its three feet is a force indeterminate system.
There are three components of forces acting on each foot tip which need to be
solved for. Thus we have 9 unknowns. However the force and moment balance
equations give us only 6 equations. Hence there will not be an unique system of
forces that will keep the robot in equilibrium at a particular given configuration.

There are various ways to deal with this difficulty. One way is to determine
the compliance of each leg along two different directions and assume zero com-
pliance along a third direction. This will reduce the number of unknowns to
6, and hence we can solve for the forces. However the main challenge in this
procedure is the determination of the compliances, which will be a function of
the configuration of the legs.

A comparatively easier and probably more legitimate approach is to assume
that the forces at the foot-tips have zero interaction component. Any system
of forces acting on a rigid body may be decomposed into two components [2]
— equilibrating component and interaction component. The interaction force
between any two foot-tips is defined as the component of the difference of the
contact forces along the line joining the two foot-tips. With this definition it can
be proved [2] that the equilibrating component of the forces form a helicoidal
vector field. A helicoidal vector field can be defined using 6 independent pa-
rameters. Hence if we assume that the interaction components are zero, we can
solve for the forces from the force & moment balance equations. The reasoning
behind assuming a zero interaction force component is that there is no internal
force between the legs that try to push them apart. This assumption is valid
if the terrain surface is moderately flat and the robot is placed lightly on the
terrain. However in general this way of solving the forces won’t actually give
the exact solution. The solution obtained by this method is just a particular
solution. Whereas the actual force system still remains indeterminate. Figure 4
and the equations that follow describe how the equilibrating component of the
forces are computed.

m

n
i

r
i

r
c

G

mg F
i

Fig. 4: The force and moment system of the quadruped robot with three feet
touching the terrain surface
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If the interaction component of all the Fi are zero, then the equilibrating com-
ponent can be written as [2],

Fi = Lū× (ri − ρ) + hLū

Thus we can write
Fi = u× ri + w (3)

where, u = Lū and w = hu + ρ× u.
Then from the force and moment balance equations∑

i Fi + mg = 0∑
i Fi × (ri − rc) = 0 (4)

it can be proved quite easily that,[
−R̂ ηÎ̂R− r̂cR̂ ηr̂c − R̂

] [
u
w

]
=

[
−mg

0

]
(5)

where, R̂ =
∑

i r̂i and ̂̂R =
∑

i r̂
2
i .

Thus from equation (5) we can solve for u and w.
It is to be noted that the

∑
i denotes summation over all those feet which

are carrying the weight of the robot. When on a stratum Sj , the sum will be
over all i 6= j. But when on S0, the choice of the weight carrying feet will
be subjective and will depend on which stratum we want to move to next or
we were previously. After all, the solution returned by this method is just one
possible solution. By changing the choice of the weight carrying feet we can
obtain a few other possible solutions.
The hat operator(̂) used here generates a 3×3 matrix from a component vector.
Essentially it is a tensor. Refer to [7] for more details.

6 A short discussion on Matlab’s Optimization
Toolbox - fmincon :

For a most of our optimization problems we have made extensive use of Mat-
lab’s optimization toolbox. As we’ll see, most of our optimization problems
will be highly nonlinear, non-smooth (sometimes even with discontinuities) and
essentially non-convex. Matlab’s fmincon is a powerful optimization tool and is
supposed to be capable enough to deal with such problem. Hence, essentially
we used the fmincon tool like a black box. Since a major part of our problem
relies on the successful working of fmincon, it is worthful to have some under-
standing about its internal working procedures. More details about Matlab’s
Optimization Toolbox can be found at the MathWorks website.

The following are some of the methods used by fmincon for solving con-
strained nonlinear optimization problems. The descriptions about these meth-
ods are primarily excerpts from MATLAB’s user manual. Please refer to MAT-
LAB’s user’s manual for more details.

i Trust-region method for Nonlinear Minimization: To understand the trust-
region approach to optimization, consider the unconstrained minimization
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problem, minx f(x), where the function takes vector arguments and re-
turns scalars. Suppose we are at a point x in n-space and we want to
improve, i.e., move to a point with a lower function value. The basic idea
is to approximate f with a simpler function q which reasonably reflects
the behavior of function f in a neighborhood N around the point x. This
neighborhood is the trust region. A trial step s is computed by minimizing
(or approximately minimizing) over N .

ii. Sequential Quadratic Programming (SQP): SQP methods represent the
state of the art in nonlinear programming methods. Schittkowski, for ex-
ample, has implemented and tested a version that outperforms every other
tested method in terms of efficiency, accuracy, and percentage of success-
ful solutions, over a large number of test problems. Based on the work
of Biggs, Han, and Powell, the method allows us to closely mimic New-
ton’s method for constrained optimization just as is done for unconstrained
optimization. At each major iteration, an approximation is made of the
Hessian of the Lagrangian function using a quasi-Newton updating method.
This is then used to generate a QP subproblem whose solution is used to
form a search direction for a line search procedure.

There are several other methods that are used by fmincon to ensure robustness
of the optimization toolbox. However we’ll restrict our present discussion on
MATLAB’s optimization toolbox upto this.
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7 Algorithms used at different stages of Local
Planning :

In this section we’ll discuss different algorithms that we have used at the various
stages of motion planning. They consist of an interpolation procedure, some
optimization problems, and a search operation. In the subsequent sections we’ll
use these algorithms and patch them up to define full algorithms for motion
planning along a given trajectory.

7.1 Interpolation between two points on a particular leaf
of a stratum:

As the heading suggests, here we have been given two points in the configuration
space that lie on the same leaf of the foliation of a particular stratum, Si, i =
0, 1, 2, 3 or 4. Let these points be Ψ1 ∈ Si and Ψ2 ∈ Si respectively. Our
objective is to interpolate between these two points such that the interpolated
points lie on the stratum Si. We will assume that Ψ1 ∈ Si and Ψ2 ∈ Si lie
close enough so that there isn’t any discontinuity present in the region between
them and we can assume the manifold Si to be smooth while performing the
interpolation.

Ψ
1

Ψ
2

SSi

Ψ(ν)

Fig. 5: Interpolating on a leaf of a stratum

In figure 5 the dotted boundary represents discontinuity. Thus we cannot come
up with a point beyond that boundary as an interpolated point. However with
our foresaid assumption we’ll assume that the boundary is far enough to be
worried about. We define a parameter ν ∈ [0, 1] such that as ν changes from
0 to 1, we move from Ψ1 to Ψ2.

We define the compact exponential coordinate representation of any g ∈ SE(3)
as ε = ε̃(g). The inverse transformation from this compact exponential coordi-
nate representation to SE(3) is simply written as g = g̃(ε). Refer to section 4.7
for details of this notation.

Interpolation on Si, i 6= 0: When i 6= 0 we define Ψ1 = {g1, {r1
i }, {rj}j 6=i} and

Ψ2 = {g2, {r2
i }, {rj}j 6=i} (Note: Here the position vectors of the foot-tips are

represented in the global coordinate frame, G. Refer to section 4.3 for the
notations). Hence the interpolated point is given by,

Ψ(ν) = {g̃ ((1− ν)ε̃(g1) + νε̃(g2)) , {(1− ν)r1
i + νr2

i }, {rj}j 6=i} (6a)

Interpolation on S0: When i = 0 we define Ψ1 = {g1, r1, r2, r3, r4} and Ψ2 =
{g2, r1, r2, r3, r4} (Once again the position vectors of the foot-tips are repre-
sented in the global coordinate frame, G. Refer to section 4.3 for the notations).
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Hence the interpolated point is given by,

Ψ(ν) = {g̃ ((1− ν)ε̃(g1) + νε̃(g2)) , r1, r2, r3, r4} (6b)

7.2 Finding an optimum point on a particular leaf of S0

such that the center of mass coincides with a desired
point on a trajectory in the physical space of the robot
— the hard persuasion strategy:

This is basically an optimization problem with well defined inequality & equality
constraints and search space. However we will have freedom in choosing the
optimization objective. The optimization problem in general will be non-convex
and highly nonlinear. The physical picture of this problem is that the robot is
standing with its four feet touching the terrain surface and hence the coordinates
of its four foot-tips are fixed. Thus now the robot has 6 degrees of freedom,
which is essentially the dimensionality of the leaf in S0. Moreover in this hard
persuasion method we are given 3 more equality constraints that makes the
center of mass coincide with a desired point r∗c (the superscript ‘*’ denotes that
this is a given/constant quantity) on a predefined trajectory τ . Thus we need
to search on a 3 dimensional sub-manifold for a suitable orientation of the robot
body. It is to be noted that since the position of the foot-tips and the center
of mass are all given, the force system computed by the method in section 5.2
will be independent of the point in the 3 dimensional search space that we are
in. If Ψ = {g, r1, r2, r3, r4} defines a particular point in the configuration space,
the optimization problem can defined as below:

Given/constants: The first three elements of ε̃(g), are related directly to r∗c .
Hence they are given. In fact with our assumption that the center of mass
of the robot coincides with the center of the body fixed frame, we can write
ṽ(g) = r∗c . Moreover the trajectory τ along with its parametrization is known,
Rτ (λ). Furthermore all the footholds, ri = r∗i , i = 1, 2, 3, 4 are known. The
footholds remain fixed in the particular leaf of S0. And finally we are also given
which of the three feet area actually carrying the weight of the robot. These
three feet will be used to compute the forces by the method as mentioned under
section 5.2. Say the index of the foot which will not be used to compute the
forces be if . Hence this optimization problem can be represented completely by
the following notation that mention the given/constant parameters:

Ψoptimum = Θ1(r∗c , τ, r
∗
1, r

∗
2, r

∗
3, r

∗
4, if ) (7)

Search space: The search space consists of last three elements of the 6×1 vector
ε̃(g). They basically represent the orientation of the robot. That is, our search
space consists of the elements of the 3× 1 vector ϑ̃ω(g).

Bounds on search space: Since we keep the twist angle corresponding to g
between −π and +π, each of the search space variables should lie in [−π, π].

Equality constraints: Essentially there isn’t any. However for better convergence
of fmincon, we impose a constraint by specifying the imaginary part of the joint
angles returned by inverse kinematics to be equal to zero.

Inequality constraints: There are three sets of inequality constraints:
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a. The vector that makes up the search space, ϑ̃ω(g), as evident, have a
magnitude less than π since we restrict the value of ϑ to be in [−π, π] and
ω is an unit vector. Thus we impose the inequality constraint

| ϑ̃ω(g) |≤ π

b. We desire that the robot body should maintain a minimum clearance of
δc from the terrain surface. Thus we have the inequality constraint

min
r∈P

fT (r) ≥ δc

c. The joint angles obtained from inverse kinematics should lie within the
allowed upper and lower bounds. Thus we must have

θmin
i,j ≤ θi,j ≤ θmax

i,j ; i = 1, 2, 3, 4; j = 1, 2, 3

We note that the force constraints will not be function of the search space
variables. Hence we don’t include them in the list of inequalities. However we
perform an initial calculation of the forces and check if they satisfy the required
conditions (please refer to the next sub-section). If they don’t, then that will
imply that there does not exist any feasible solution that will satisfy the force
constraints.

Optimization objectives: The optimization objectives are not unique and may
be changed to obtain more desired results. The following are a few objective
functions that we have used:

a. We define a desired orientation of the robot body such that it remains
parallel to the terrain surface and remains oriented along the tangent at
that point on the trajectory. Let the given trajectory be Rτ , parametrized
by parameter λ. Thus we have a reference forward direction uf = ∂Rτ

∂λ

∣∣
r∗c

and a reference normal direction un = ∇sfT |r∗c . Then we define the
following two objective functions to be maximized,

σ1 = Guf · R̃(g)
[
1
0
0

]
σ2 = Gun · R̃(g)

[
0
0
1

]
b. We desire that the joint angles remain well within their working range

or they don’t assume too much extreme values so that the legs assume
very odd configurations. That’s why we defined a normal configuration
of the legs in section 4.2. Hence we now define another objective to be
maximized,

σ3 =
1

1 + ‖(θ − θnor)K‖
where, θ and θnor are 4 × 3 matrices whose elements are θi,j and θnor

i,j

respectively (note that θi,j are obtained from Ψ by inverse kinematics);
K is a 3× 3 scaling matrix which we chose to be the identity matrix; and
‖ · ‖ is a suitable matrix norm.

Thus we define the final combined objective to be minimized,

σ = −σ1
γ1σ2

γ2σ3
γ3

where, γ1, γ2 and γ3 are suitable weight factors.
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7.3 Finding a point on a particular leaf of S0 such that
the center of mass is close to a desired point on a
trajectory in the physical space of the robot — the
soft persuasion strategy:

This problem is very similar to the previous one, except that now we relax the
constraint that the center of mass of the robot should coincide with a given r∗c
(the superscript ‘*’ denotes that this is a given/constant quantity). As a con-
sequence we add three mode dimensions to our search space which correspond
to the position of the center of mass. This undoubtedly increases the computa-
tional cost for this algorithm. Moreover we have the additional set of inequalities
defining the force constraints. Thus once again, if Ψ = {g, r1, r2, r3, r4} defines
a particular point in the configuration space, the optimization problem can de-
fined as:

Given/constants: The trajectory τ that is to be followed, along with its parametriza-
tion, is given Rτ (λ). A given point in the space is r∗c (note that here we relax
the condition that r∗c is a point on the given trajectory. Section 8.2.1 describes
a particular method for finding a good r∗c .) and one of our objectives will be to
keep the center of mass of the robot as close as possible to this point. More-
over all the footholds, ri = r∗i , i = 1, 2, 3, 4 are known. The footholds remain
fixed in the particular leaf of S0. Moreover as before, the force carrying feet are
mentioned. Say the index of the foot which will not be used to compute the
forces be if . Hence this optimization problem can be represented completely by
similar notation as before:

Ψoptimum = Θ2(r∗c , τ, r
∗
1, r

∗
2, r

∗
3, r

∗
4, if ) (8)

Search space: The search space consists of the elements of the 6×1 vector ε̃(g).
They basically represent the position and orientation of the robot’s body fixed
frame. Thus we have a 6 dimensional search space.

Bounds on search space: Since we keep the twist angle corresponding to g be-
tween −π and +π, the last three search space variables should lie in [−π, π].
That is, each of the elements of ϑ̃ω(g) should lie in [−π, π].

Equality constraints: As before, there isn’t any proper equality constraint. How-
ever for better convergence of fmincon, we impose a constraint by specifying the
imaginary part of the joint angles returned by inverse kinematics to be equal to
zero.

Inequality constraints: The first three sets of inequality constraints are the same
as before. In addition we have 2 force constraints:

a. | ϑ̃ω(g) |≤ π

b. minr∈P fT (r) ≥ δc

c. θmin
i,j ≤ θi,j ≤ θmax

i,j ; i = 1, 2, 3, 4; j = 1, 2, 3

d. The forces are computed as mentioned in section 5.2. The summations
are performed over i 6= if . The first set of force inequalities specify that
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none of the normal component of forces at the relevant foot-tips should
be negative. Thus,

Fi · ni > 0, i 6= if

e. The second set of force inequalities specify that the force system at the
foot-tips should lie within the friction cone. Thus,

| Fi − (Fi · ni)ni |< µ(Fi · ni), i 6= if

However, under certain circumstances we may not want to impose the last two
inequality constraint, i.e. the force inequality constraints. The simple reason
being the fact that the force system solved here is just a particular solution and
does not represent the actual forces. Hence whenever we don’t want to impose
inequalities d. or e., we will mention that while using this algorithm. However
we will include them unless explicitly mentioned not to do that.

Optimization objectives: In addition to the optimization objectives mentioned
in the previous section, we have one additional objective to keep the center of
mass as close to rc as possible. Thus the objectives are,

a. We define reference forward direction uf = ∂Rτ

∂λ

∣∣
λr∗c

(where λr∗c represents

a point on the trajectory τ close to the point r∗c) and reference normal
direction un = ∇sfT |r∗c . Then,

σ1 = Guf · R̃(g)
[
1
0
0

]
σ2 = Gun · R̃(g)

[
0
0
1

]
b. θi,j are obtained from Ψ using inverse kinematics. We define,

σ3 =
1

1 + ‖(θ − θnor)K‖

c. We define the objective to be maximized that will keep the center of mass
of the robot as close as possible to r∗c ,

σ4 =
1

1 + |ṽ(g)− r∗c |

d. And finally we define an objective that will ensure that the forces at the
foot-tips remain well within the friction cone. Thus we wish to maximize

σ5 = min
i 6=if

(
Fi · ni

|Fi|

)
However it can be noted here that since the forces that we calculated are
just a particular solution, at times we may not wish to use this objective.

Thus we define the final combined objective to be minimized,

σ = −σ1
γ1σ2

γ2σ3
γ3σ4

γ4σ5
γ5

where, γ1, γ2, γ3, γ4 and γ5 are suitable weight factors.
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7.4 Finding a point in a new leaf of Sif∩S0, if 6= 0 searching
along a leaf of Sif — the foot placement algorithm:

Once again this is a nonlinear, non-convex optimization problem with well de-
fined inequality & equality constraints and search space, and some freedom in
choosing the optimization objectives. Here the physical picture is we are given
three footholds for the robot on which the weight of the robot is distributed,
and the g∗ (the ‘*’ denotes that it is a given/fixed parameter for this problem)
defining the position & orientation of robot body is also given. So now we have
the freedom to move the other leg. Our goal will be to choose a foothold for this
leg on the terrain surface, while keeping g∗ and other footholds fixed. Thus if
the index of the foot that is to be placed is if , then we are essentially searching
for a suitable point in S0 ∩ Sif

lying on the particular leaf of Sif
defined by

the other 3 footholds. But since we have fixed g, our search space will be a
sub-manifold of the leaf. Essentially our search space will be a 3 dimensional
sub-manifold of the leaf. Thus, if Ψ = {g, r1, r2, r3, r4} defines a particular point
in the configuration space, the optimization problem can defined as:

Given/constants: The trajectory τ that is to be followed, along with its parametriza-
tion, Rτ (λ) is given. g = g∗ is given, and we denote the different components
derivable from g∗ by r∗c = ṽ(g∗), R∗ = R̃(g∗), etc. And three of the footholds
are given as ri = r∗i , i 6= if . Hence this optimization problem can once again
be represented completely as,

Ψoptimum = Θ3(g∗, τ, {r∗i }i 6=if
, if ) (9)

Search space: The search space is simply the components of the vector rif
.

That means we are searching only for a foothold. It can be noted that the
boundaries of the search space, rif

is rather complex. To simplify the problem
we can instead choose our search space to be θif ,j , j = 1, 2, 3. Although these
two spaces are not homeomorphic, we can use either of them without much
difficulty. Since it is easier to define the boundaries in the θ space, we choose
θif ,j , j = 1, 2, 3 as our search space. The transformation to the rif

space can
be obtained using the Direct/Forward Kinematics described in section 5.1.1.

Bounds on search space: The search space θif ,j , j = 1, 2, 3 has very simple
linear boundaries,

θmin
if ,j ≤ θif ,j ≤ θmax

if ,j ; j = 1, 2, 3

Equality constraints: Since the ithf foot should touch the terrain surface, we have
the following equality constraint,

fT (rif
) = 0

Inequality constraints: Essentially there isn’t any, since we have already defined
the bounds on our search space. However for ensuring that the foothold is not
chosen at a place which is very steep, we impose a limit on the slope of the part
of the terrain surface where the foot is to be placed. We define cos θ̄ =| ĝ ·nif

|,
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where ĝ is an unit vector along g. Thus we impose the inequality constraint,

tan θ̄ ≤ µ

Optimization objectives: Presently we have 3 different objectives:

a. We define a target foothold for the if foot that is to be placed. Let the
position vector of the target foothold be rt

if
. There may be different ways

for finding a rt
if

. Presently we have a very crude way of defining a target
foothold. Section 8.2.2 gives a particular method of finding this rt

if
. Thus

now we define the first objective to be maximized,

σ1 = hm

(∣∣∣M(rif
− rt

if
)
∣∣∣)

where M is a scaling tensor which may be a function of (rif
− rt

if
), and

hm : R+ → R+ is a monotonically decreasing function. Presently we are
using a heuristic approach for choosing M and hm, the details about which
will not be discussed right now.

b. It is preferable to place the foot on a flat part of the terrain. By flat we
mean that the normal to the surface should remain aligned with −g. Thus
we add the following objective to be maximized,

σ2 = 1− ĝ · nif

where ĝ is basically an unit vector along the direction of g.

c. And finally we have an objective to be maximized that helps to keep the
joint angles close to the normal configuration joint angles,

σ3 =
1

1 +
∣∣∣(θif

− θnor
if

)K
∣∣∣

where, θif
and θnor

if
represents the vector whose jth elements are θif ,j and

θnor
if ,j respectively. K is again a 3 × 3 scaling matrix for which we are

presently using the identity matrix.

Thus we define the final combined objective to be minimized,

σ = −σ1
γ1σ2

γ2σ3
γ3

where, γ1, γ2 and γ3 are suitable weight factors.

7.5 Initial placement:

This algorithm is not required for the case of actual experimentation with a
quadruped robot. However in simulation we need to perform this extra step to
make sure that the robot is initially placed on one of the allowed strata. Thus
essentially we need to search in the 18 dimensional configuration space to find
an initial placement for the robot. Thus this is an extremely computationally
expensive step that needs to be performed at the beginning of a local planning
process. We can however reduce the dimensionality of the search space by
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specifying a rc close enough to the terrain surface such that a feasible solution
can be found. As before, let Ψ = {g, r1, r2, r3, r4} defines a particular point in
the configuration space. Then,

Given/constants: ṽ(g) = r∗c is given. Moreover the trajectory τ along with
its parametrization is known, Rτ (λ). But none of the footholds are known.
Hence this optimization problem can be represented completely by the following
notation:

Ψoptimum = Θ4(r∗c , τ) (10)

Search space: The search space consists of the elements of the 3×1 vector ϑ̃ω(g)
and the joint angles of the feet θi,j ; i = 1, 2, 3, 4; j = 1, 2, 3.

Bounds on search space: Since we keep the twist angle corresponding to g

between −π and +π, we have ϑ̃ω(g) ∈ [−π, π]. Moreover, θmin
i,j ≤ θi,j ≤ θmax

i,j ;
i = 1, 2, 3, 4; j = 1, 2, 3.

Equality constraints: Since the foot-tips should touch the terrain surface, we
impose the equality constraints fT (ri) = 0, i = 1, 2, 3, 4. The ri are computed
using Forward Kinematics.

Inequality constraints: Following are the sets of inequality constraints:

a. | ϑ̃ω(g) |≤ π

b. minr∈P fT (r) ≥ δc

c. θmin
i,j ≤ θi,j ≤ θmax

i,j ; i = 1, 2, 3, 4; j = 1, 2, 3

d. Fi · ni > 0; i = 1, 2, 3, 4

e. | Fi − (Fi · ni)ni |< µ(Fi · ni); i = 1, 2, 3, 4

Note that here we consider all the four feet for computation of the forces. That
means the

∑
i used under section 5.2 for the computation of forces run from

i = 1 to 4. This assumption may be satisfactory for the purpose of initial
placement. However as before, we may choose not to impose the force inequality
constraints.

Optimization objectives: The following are a few objective functions that we
have used for this algorithm:

a. As before, we define reference forward direction uf = ∂Rτ

∂λ

∣∣
r∗c

and refer-

ence normal direction Gun = ∇fT |r∗c . Then we define the following two
objective functions to be maximized,

σ1 = Guf · R̃(g)
[
1
0
0

]
σ2 = un · R̃(g)

[
0
0
1

]
b. For keeping the joint angles close to the normal values, we define the

following objective to be maximized,

σ3 =
1

1 + ‖(θ − θnor)K‖
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where, θ and θnor are 4 × 3 matrices whose elements are θi,j and θnor
i,j

respectively; K is a 3× 3 scaling matrix which we chose to be the identity
matrix; and ‖ · ‖ is a suitable matrix norm.

Thus we define the final combined objective to be minimized,

σ = −σ1
γ1σ2

γ2σ3
γ3

where, γ1, γ2 and γ3 are suitable weight factors.

7.6 Algorithm for searching along a trajectory:

This algorithm essentially uses the algorithms in section 7.2 or section 7.3 to
perform a search by varying the values of rc that those two algorithms need as
given parameters. This problem may be represented as,

Ξ = {(Ψ, λ) | Ψ = Θk(Rτ (λ), τ, r∗1, r
∗
2, r

∗
3, r

∗
4, if ) returns a feasible solution }

= Ωk (τ, r∗1, r
∗
2, r

∗
3, r

∗
4, if )

(11)
We use a binary search technique to perform this search operation. Here k =
1 or 2 depending on whether we are using a hard or a soft persuasion method.
Hence basically we need to alter the values of λ and determine which points
on the trajectory are attainable by the center of mass of the robot. However
it can be noted that for k = 2, i.e. the soft persuasion method, the value of
λ will not determine the existence of a feasible solution. Hence essentially the
use of this search algorithm will make sense only if we are making use of the
hard persuasion method, i.e. k = 1. Thus we will always assume k = 1 unless
explicitly told to do otherwise.
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8 Algorithms for local planning :

In the following subsections we will discuss a few algorithms that we had been
using for the purpose of planning the motion along a given trajectory in the
physical space of the robot. All the algorithm are primarily based on a heuristic
approach. The basic strategy behind designing these algorithms is that during
the motion we mostly try to move along leaves of S0. When on a leaf of S0 we try
to move such that the distance from the goal Ψ is reduced as much as possible.
Once it is no more possible to move along a particular leaf of S0 because of
presence of discontinuities, we shift to another leaf via a leaf of Si, i 6= 0. We
make this transition as quick and minimal as possible, however always trying
to move along a direction which takes the robot closer to the goal Ψ. A typical
snippet of a path in the lower dimensional representation of the configuration
manifold (as discussed under section 1.1 ) may look something as below:

∆SS0

SSkAΨ

BΨ

∆SSk



 '

Fig. 6: A snippet of a typical path in the configuration manifold - a reduced
dimensional representation

The above figure shows the transition from one leaf of S0 to another via a leaf of
Sk, k 6= 0. We try to keep the part Ψ̄−BΨ as short and simple as possible, but
the primary motion takes place in this part. On the other hand the portions
AΨ− Ψ̄ and BΨ− Ψ̄′ are essential to reach one leaf of Si1 from one of Si2 , but
primary motions don’t take place along them. The dotted boundaries show the
discontinuities in the strata. Hence we need to take care that the robot stays
inside these boundaries.

There are primarily two approaches that we have used in planning a path
as mentioned above.

i. The first approach as described under section 8.1 uses a binary search
technique to find points on the leaves of S0.

ii. Whereas in the second approach we find only a few distinct key points in
the manifold (like the points Ψ̄ or BΨ in figure 6 ) and then rely completely
on the interpolation algorithm (described under section 7.1 ) to find the
trajectories.
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8.1 An algorithm for local planning using search in S0 and
the hard persuasion strategy:

This is the most basic and primitive algorithm that we have used for the local
planning. In this algorithm we make use of the search procedure that we defined
under section 7.6. The flowchart below gives the overall idea about the algo-
rithm. There may be a few finer aspects that are not reflected in the flowchart
but has been implemented in practice.

The trajectory τ along with its parametrization is given. Points on the
trajectory are given by Rτ (λ), where λ ∈ [λa, λb]. A gait step sequence is given,
S = {s1, s2, · · · }.

In case of a simulation: Perform initial Placement:

In case of real robot: Read initial position
                                    (the CG must coincide with           )
 Set   k = 1

Find attainable range of    
Move on to

next leg in S
k → k+1

FailureSuccess

Failure

Tried over
all 4 legs?

No

Find new foothold for the s
k
th leg

Goal crossed?

No

Stop
Yes

A=4 Ra, 

R a

A=1 , A . r1,
A . r2,

A . r3,
A . r4, sk

B=3   . g ,  , {  . r i }i≠ sk
, sk

Choose                       such that
    is the maximum
  ,  ∈ A



Choose another                       such
that     has the next highest value

  ,  ∈ A


Tried over all       
in      ?

 ,
A

No

Execute Motion:
 
i. Move from present        through all suitable
                 performing interpolation as and
   when required.
ii. Move to        performing interpolation as required.

A
∈A

B

Success

● Set          
● Move to next foot:  k → k+1

A=B

Return Failure

Yes

Yes

24



8.2 An algorithm for local planning using interpolation
and the soft persuasion strategy:

The basic concept behind this algorithm is that we primarily rely on the inter-
polation procedure of section 7.1 for planning the motion. We just find a few
key points in the manifold that we must pass through, and let the interpolation
algorithm take care of constructing the path.

In addition to this we make a modification on the algorithm in the previous
section (8.1 ) by introducing a notion of gait step queue. This helps us in dealing
with failures of Θ1 or Θ2 in a more efficient manner. A gait step queue is a list
if the indices of feet, quite similar to gait step sequence (S) mentioned in the
previous section. The only difference being that this is not a fixed list and the
items in the list change dynamically during the runtime. In the queue we have
the notions of pushing, popping and swapping of elements.

Before we present the flowchart we would like to discuss two short algorithms
for calculating the r∗c used in the algorithm of section 7.3, and for calculating
rt

if
used in the algorithm of section 7.4.

8.2.1 Method for finding a suitable r∗c for using in Θ2 (algorithm of
section 7.3):

An evident choice for r∗c will be an arbitrary point ahead on the trajectory, so
that the robot’s center of mass moves as much forward as possible. However
there are certain reasons because of which this many not be what we would
like to have in the actual experiments. In our model we make assumption of
a quasistatic system, which in real experiments is not true even when we take
much care. This results in changes in the boundaries/discontinuities in the
workspace induced by the force inequalities. Moreover we need to account for
errors and inexact measurements in the actual experiments. Thus to ensure
that the robot is sufficiently away from these uncertain workspace boundaries,
we need to choose r∗c accordingly. It is to be noted here that since our model
cannot predict how the boundaries will behave, we can’t have a proper way of
determining the desired r∗c . Thus we use a rather heuristic approach.
Given a Ψ and an index if of a foot, we find the r∗c as,

r∗c = Λc(Ψ, if ) (12)

Where Λc is essentially a 2-step algorithm. In the the first step we compute
r+

c =
∑

i 6=if
Ψ.ri. In the second step we lift up the point from the terrain surface

to a distance of dc from the terrain surface. In case of a simple terrain (a terrain
that can be represented with the global x and y coordinates as parameters and
z = zT (x, y)) this is done rather trivially. We just increase the z coordinate of
Gr+

c by a value of dc and hence obtain r∗c .

8.2.2 Method for finding a suitable rt
if

for using in Θ3 (algorithm of
section 7.4):

As mentioned under section 7.4, rt
if

is a target foothold for the foot placement
procedure. The details of this method will not be discussed here. But the basic
concept is that, given a Ψ and the if , we find a point on the trajectory τ which
is close to Ψ.g.v. Then we compute the normal position of the foot-tip of leg if

25



had the robot’s center of mass coincided with that point on the trajectory. (By
normal position we mean the configuration when the joint angles are all equal
to θnor

i,j , i.e. the normal configuration.) Then we just choose rt
if

to be a point
ahead of this normal position of if foot-tip in the direction of the trajectory τ .
This problem may be represented as

rt
if

= Λt(Ψ, if , τ) (13)

8.2.3 The flowchart:

As before, the trajectory τ along with its parametrization is given. Points on
the trajectory are given by Rτ (λ), where λ ∈ [λa, λb]. A gait step queue, Q, is
given.
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Comments on this algorithm:

i. Since we use the soft persuasion procedure, this algorithm has greater
probability of success compared to the one in section 8.1.

ii. Using the notion of a gait step queue enables us to keep trying with a
particular leg again and again in case of failure. This is contrary to the
algorithm of section 8.1 where we had to wait for one complete gait cycle
to retry a leg that failed in the previous cycle.

iii. Although we don’t use a failure handling procedure for the foot placement
step, Θ3, we can note that the probability of failure of Θ3 is quite low.
However an absence of failure handling procedure definitely makes it less
robust.

iv. Since the calculation of r∗c does not involve the information about the
trajectory, basically we don’t perform any significant motion towards our
goal using Θ2. The main movement towards goal is performed using Θ3,
i.e. the foot placement procedure.

8.3 Creating a feedback system:

We have recently implemented a feedback step in our algorithm in order to
account for the deviations of the actual robot from our model due to the quasi-
static assumption and also to account for the errors that creep into the system.
For the actual experiment we make use of the MOCAP system [6] to obtain the
state information of the real robot. Then we just add a simple additional step
in the main loop of the flowchart of section 8.2.3 to update the AΨ. In fact
in place of the step ‘Set AΨ = BΨ’ we use a step to read AΨ, the state of the
actual robot.

The study on stability or convergence of this feedback procedure is beyond
the scope of the present work. However if the errors and deviations are small,
we note that the BΨ at the end of a particular cycle will be almost same as the
state of the robot that is being read into AΨ. Thus even with the feedback the
algorithm will work similar to the working of the algorithm of section 8.2.3 on
our constructed model.

8.4 An algorithm involving pre-computation and feedback
correction:

The optimization processes using MATLAB’s fmincon is extremely computa-
tionally expensive. While it is possible to run all the previously mentioned
algorithms in real time on the robot, the slow movement of the robot may not
be very presentable. Hence we are devising a method by which the states of the
robot for moving along a given trajectory will be precomputed in a simulation,
and then we’ll execute all the states all together on the actual robot. But to
account for the errors that may cause deviation of the robot from the simulated
states we perform small corrections based on the feedback from the MOCAP [6]
system. We are in the process of development of this method.
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8.5 A robust algorithm for local planning using recursive
techniques for dealing with failure situations:

We haven’t yet implemented this algorithm, but a supposed high potential of
this algorithm makes it worth of discussion.

As evident from the algorithm of section 8.1, it is capable of dealing with a
few situations where Ω1 or Θ3 returns failure. Similarly the algorithm of section
8.2.3 is capable of dealing with failures of Θ2. Under such failure situations it
just tries to move on to the next foot or trace back in the list of Ψ’s that the
search algorithm returned.

However this method of dealing with failure is not robust and there may be
situations when the algorithm returns total failure. Hence we need a technique
that will be able to trace back the steps as much required when the algorithm
encounters a failure. It should have the ability to trace back as many times as
required till it finds a feasible solution for the step where it got stuck.

The implementation of such an algorithm is possible efficiently only using
a recursive technique. We haven’t yet constructed a formal scheme for such
an algorithm, but have the basic outline. We’ll discuss in brief about the out-
line using a schematic flowchart. The details of the algorithm are yet to be
developed.

For using in this algorithm, we modify the optimization problems Θ2 and Θ3

slightly by adding an extra parameter to the input arguments of these problems.
Thus the optimization problems in equations (8) and (9) are now represented as
Θ2(· · · , ρ2) and Θ3(· · · , ρ3), where ρ2 and ρ3 are the parameters and can assume
positive values. The parameters will possibly be used in the objective functions
of the respective problems so that altering the parameter will result in different
solution to the problem. However that should not change the state of existence
of a feasible solution. A high value of ρi, i = 2, 3 will mean very ambitious
movements, while a low value will imply short and minimal movement.

We define the recursive algorithm in a functional form,

[fΨ, e] = F(iΨ, Q, n, ρ) (14)

This function is supposed to start with the robot state iΨ and move for n
steps (by a step we mean the combined process of body movement Θ2 and foot
placement Θ3 in a particular cycle of our algorithm), executing the states all
within itself, and finally return the final state of the robot, fΨ. A gait step
queue, Q, is also supplied. ρ = {ρ2, ρ3} is the parameter vector that is supplied.
On success it will return e = 1, else will return e = 0. Moreover there is a given
trajectory τ , the information about which is available globally. The schematic
structure of F is given in the next page.
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● Select the top-most foot, s, in Q.
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Discussions:

i. Quite evidently this is a high computationally expensive process, like any
other recursive processes, specially if too many failures are encountered.

ii. Being a recursive algorithm it has the ability of tracing back steps and
hence is more robust towards failure situations.
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9 The global planning — planning an optimum
trajectory:

We haven’t yet implemented this part of the algorithm. However once the local
planning is completed successfully, the global planning will be a comparatively
easier issue. We can always calculate the cost associated with a given trajectory.
using some suitable criteria. Let us denote the cost associated with a trajectory
τ by C(τ). The exact functional form of C is yet to be worked out.

Let’s define a particular trajectory τ0 that connects the initial point to the
goal point in the physical space of the robot. Let its parametrization be given
by Rτ0(λ), λ ∈ [λa, λb]. Then any arbitrary trajectory τ , passing through the
initial and goal points may be represented by the following parametrization,

GRτ (λ) = GRτ0(λ) +
∞∑

p=1

sin
(

pπ(λ− λa)
λb − λa

)  Ap1

Ap2

Ap3

 (15)

Then our problem of global planning reduces to the following optimization prob-
lem,

C(τoptimum) = min
Apq∈R

C(τ) (16)

Thus we basically search over different trajectories to find the one whose cost is
the minimum. As quite evident, this problem will be extremely computationally
expensive and will not be feasible in real time. However we may pre-compute
the optimum trajectory and make the robot follow it after that.

10 Simulations and Experiments:

We have implemented the algorithms in MATLAB and performed simulations
on an exact model of the Little Dog robot [6]. Below is a screenshot of our
simulated model.

Fig. 7: Simulated model of the Little Dog Robot in MATLAB

We have started working with the actual Little Dog Robot and have made it
walk on flat surfaces using our algorithms with satisfactory success. Presently
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we are working to make it walk on rough terrains. We have implemented the
feedback correction system discussed under section 8.4 successfully. We have
also attained some success in making the robot walk on one of the rough terrains.
However we still need to do quite a lot of work to make the performance of the
feedback correction system better and more robust.
The latest videos and updates about the works in progress can be found at
http://www.seas.upenn.edu/∼subhrabh/nonWebsite/LittleDog/index.html.

11 Conclusions — Achievements, Drawbacks and
Future works:

We have so far done a systematic study of the stratified configuration manifold
of a quadruped robot. We have defined the manifold including its strata and
their foliations completely using proper notations, equations and inequalities.
Moreover we have designed a scheme for planning motion along the leaves of
the foliations of the strata.

One major drawback of the optimization algorithms is that they are ex-
tremely computationally expensive. Although the local planning may be possi-
ble to be implemented in real time using powerful processors, the global plan-
ning can not be done in real time with the present processing power of available
computers. Moreover as mentioned in the previous section, our assumption of
quasistatic model is quite idealistic. To make the algorithm work better we need
to incorporate the dynamic terms in the equations.

Hence at present we have quite a few tasks in hand that we would like to
implement in the recent future. Below is a short list of them:

i. Complete and implement the algorithms mentioned under section 8.4 and
section 8.5.

ii. Gain more success in making the robot walk on rough terrains in actual
experiments.

iii. Perform the global planning as described under section 9.

iv. Include the dynamic terms in the force equations so that we no longer
restrict ourselves to the quasistatic model. This will essentially increase
the dimensionality our search space (since now the velocities will also be
included as state variables) and will induce more constraints in our search
processes.
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