
On Maintenance of Connectivity of Mobile
Robot Network Using a Decentralized Scheme

Term Project Report for ESE 680 (Distributed Systems & Networks)

submitted by
Subhrajit Bhattacharya

1 Introduction:

Maintaining communication connectivity among mobile robots is an important
issue in a wide class of problems. Problems like formation control, rendezvous,
consensus attainment or even the problem of goal attainment requites that there
exists a communication path between the agents. The primary challenge is in
achieving the goal that the agents are supposed to pursue and at the same time
maintaining the connectivity of the network. However often it may turn out that
one of these objectives compromises the other. Thus the final goal in studying
the problem may be to reach an optimum such that the required connectivity
is maintained and the goals are reached as much as possible.

2 Some literature survey and the scope of present
work:

In [2] the problem of maintaining the graph connectivity in a network of mobile
robots has been addressed in an involved and rigorous way. The main idea
behind the particular approach is to modify the topology of the graph in such
a way that the second eigenvalue of the graph Laplacian increases. Since the
second eigenvalue is a measure of the connectivity of the graph, an increase
in its value will imply increase in connectivity of the graph. Hence this is
basically an optimization problem where the objective is the second eigenvalue
of graph Laplacian and the search space is the space of all possible topologies
of the graph. However this approach may turn out to be more conservative
than desired. There may be situations where we may not desire to actually
increase the graph connectivity, and rather just wish that the graph doesn’t get
disconnected. That means we may want that the second eigenvalue of the graph
Laplacian will not become zero, but can assume any small value.

The present work deals with development of an algorithm that will ensure
the connectivity of communication graph among mobile robots. The algorithm
will act as a controller adjacent to the primary controllers for the system. The
basic aim behind the design of this controller is that it will interfere very little
with the system till the connectivity graph is not on the verge of being sacrificed.
It lets the graph topology to change naturally under such situation. But when
the controller detects that the connectivity of the graph is close to its breaking it
puts hard restrains on the velocity inputs so as to ensure that the graph remains
connected.

1

3 Overview of the problem:

The problem consists of N mobile robots moving on a flat surface. Each robot
can communicate with its neighbors within a radius of rc. Each agent starts from
an initial location and navigates towards their respective goals. The primary
controller for an agent that calculates the default velocity command consists of
the computation of gradient of a simple potential field at the current location
of the robot. In our present simulations we assume a potential field with an
unique minima at the goal and we don’t perform any collision avoidance.

Our goal is to now devise a secondary controller which will modify the veloc-
ity command that was issued by the primary controller so as to ensure that the
graph connectivity is maintained. In our approach we’ll achieve this in a rather
conservative fashion. That means we will devise the algorithm such that the
graph connectivity is never broken even if that means some or all the agents will
not be able to reach their respective goals. But sacrifice of graph connectivity
will not be allowed.

4 Assumptions, hypothesis and solution approach:

4.1 Assumptions and hypothesis:

This particular problem relies on the following hypothesis:

i. Each agent is a point on the flat surface and has absolute maneuverability
(i.e. can change the direction of motion instantaneously). There is no
obstacle in the workspace and being points, the agents don’t collide with
each other.

ii. Each agent issues new velocity commands at a regular interval of time
∆t. Within a particular interval of ∆t between the successive issue of
velocity commands by a particular agent, the velocity of the agent remains
constant.

iii. There is an upper bound on the magnitude of the velocity of the agents.
We represent this maximum speed by vm.

iv. The velocity limits (vm) and the time intervals between the successive
issue of velocity commands (∆t) need to be the same for all the agents.

v. However the agents need not be synchronized.

vi. The agents are always ready to communicate with each other whenever
they are within the critical radius rc. The information that can be ob-
tained by an agent from a neighbor are:

a. The ID of the neighbor

b. The relative position of the neighbor from the agent in the agent’s
local coordinate system (possibly measured by a range sensor)

vii. If the time required for communication between two agents is τ , then we
assume that Nτ < ∆t. This is a very important condition that needs to
be true for our present approach of solution.

2

4.2 Solution approach:

The solution approach primarily consists of the following stages as performed
by each agent at each time-step:

i. Creating an initial estimate for the adjacency matrix depending on which
other agents it can communicate with.

ii. Sharing this estimate with its neighbors and propagation of the informa-
tion over the network in a distributed fashion. This will enable an agents
to have an estimate of the net adjacency matrix of the particular connected
component of the graph of which it is a part.

iii. Once the ’global’ adjacency matrix is known, the agents detect the critical
edges that are connected to itself.

iv. Knowing the critical edges, the agents now modify their velocities accord-
ingly so that none of the critical edges get broken over the time till the
issue of the next velocity command. This velocity modification is per-
formed in two stages. The first stage is basically a heuristic one, whereas
the second stage will ensure connectivity in a more rigorous fashion.

Note that here by ’time-step’ we meant the time instants at which new
velocity commands are issued by the individual robots. In the following sections
we’ll investigate each of these above mentioned stages one by one.

5 Estimating and propagating the Graph adja-
cency:

The main idea in this stage is each agent has an estimate of the graph adja-
cency which they update by communicating with its neighbors. During this
update process it is assumed that the graph topology doesn’t change. Although
this assumption is rather controversial, the assumption will work fairly well as
long as the graph remains connected during this process, even if its topology
changes. And in the later section we’ll see that we can actually put bounds on
the velocities so as to ensure that the graph remains connected.

Thus, if Ak is the estimate of the adjacency matrix made by agent k, we will
refer to the (i, j)th element of the matrix at the pth step of updating it by pAk

i,j .
There are two processes now:

a) Initiation: 0Ak
i,j is initiated for each agent k by the following rule:

0Ak
i,j =

{
1 , if either i or j is connected to agent k
0 , otherwise

b) Propagation: The elements of adjacency matrix are updated by talking to
the neighbors according to the following rule:

p+1Ak
i,j = max{pAk

i,j , max
l∈Nk

pAl
i,j}

where, NK is the set of neighbors of agent k.

3

It can be proved [1] that the number of steps that the process of propagation
will take to be completed (i.e. for an agent to obtain the whole adjacency matrix
of the connected component of the graph) is not more than the length of the
longest path in the particular connected component of the graph. Since the
agents don’t have an estimate of the length of the longest path, we run the
propagation for N times, which can be the maximum length of any path in a
grap with N nodes.
Moreover it is to be noted that the information about the adjacency matrix that
gets propagated is the one that was initiated at the initiation step. Thus even
if the graph topology gets changed during the propagation process, if the graph
remains connected along this time, the final estimate that each agent will have
about the graph adjacency is the one that was existent at the time of initiation
step.

6 Finding the critical edges connected to a par-
ticular agent:

Once each agent has an idea about the adjacency of the particular connected
component of the graph, they should determine which ones are the critical edges
that are connected to itself. So here we define a critical edge of a connected
component of a graph to be such an edge, the removal of which will break the
particular connected component into smaller disconnected components.

The above definition for critical edge is extremely limited and it is expected
that a modified definition will help in better performance of the algorithm. As
we will see at the end of this paper, there can be cases where this definition for
critical edge will result in catastrophic failure of our present algorithm. In future
there will be attempts to modify this definition so as to make the algorithm
robust.

As for now, with the present definition for a critical edge, we can tell if an
edge is critical or not in two trivial ways:

i. Remove the particular edge in question and compute the Laplacian of the
newly formed graph. Compute the second eigenvalue of this Laplacian. If
this eigenvalue is zero then the edge is a critical edge.

ii. Remove the particular edge in question and compute the adjacency matrix
Ã of the newly formed graph. Compute Ãs = Ã · Ã · · · Ã (s times), for all
s ∈ {1, 2, . . . , N}. If at least one of these powers of Ã is a positive matrix
(i.e. a matrix with all the elements being positive), then the particular
edge is not a critical edge, else it is.

Since the second method is computationally less expensive, we implemented it
for our simulations.
We define Ci ⊆ Ni the subset of neighbors to agent i, the connections to which
form critical edges for the particular component of the graph. Agent i will be
responsible in ensuring maintenance of only the critical edge that connect i and
j ∈ Ci.

4

7 Stage-I in modifying the velocity of an agent:

Once the critical edges have been identified, now the agents need to modify
their velocities such that the critical edges attached to them are not broken.
The Stage-I is a rather a heuristic one where the agent i basically reduce the
components of their velocities parallel to the critical edges (i, j), j ∈ Ci, thus
slowing down the rate at which it was getting separated from the agents con-
nected to it through the critical edges.
If agent i is the one that is under consideration, and Ci is the set of all agents
with which it is connected via critical edges, we first define the following:

i. Vi =
{

V 1
i

V 2
i

}
be the default velocity command that agent i receives from

the primary controller.

ii. rij be the vector from agent i to agent j ∈ Ci. Thus if xi and xj are the
position vectors of agent i and agent j respectively, rij = xj − xi.

iii. nij = rij

|rij | =
{

n1
ij

n2
ij

}
be the unit vector along rij for all j ∈ Ci.

iv. We define the parallel component matrix and perpendicular component
matrix respectively as follows:

M‖
ij =

[
(n1

ij)
2 n1

ij · n2
ij

n1
ij · n2

ij (n2
ij)

2

]

and, M⊥
ij = I−M‖

ij

where, I is the identity matrix. Note that with these definitions, M‖
ijVi

and M⊥
ijVi are the components of Vi parallel and perpendicular to nij

respectively.

v. Thus we define a moderation matrix as follows,

M̂ij =

{
I , if M‖

ijVi · nij > 0
M⊥

ij + f(| rij |)M‖
ij , if M‖

ijVi · nij ≤ 0

where, f(r) is a monotonically decreasing function in r ∈ [0, rc] such that
f(0) = 1 and f(rc) = 0. For our simulations we chose f(r) = cos πr

2rc
.

Now if we consider M̂ijVi, such a definition of M̂ij and f will ensure that
the effect of the secondary controller on the velocity will be none when Vij

tends to reduce the distance between agents i and j, and will be very little
when | rij |� rc. But it will tend to decrease the component of Vi paral-
lel to nij as | rij | approaches rc. The following figures makes it more clear:

5

i

j

V
i

r
ij

i

j

V
i

r
ij

Fig 1a: M‖
ijVi · nij > 0 Fig 1b: M‖

ijVi · nij < 0

Thus we define the modified velocity after this Stage-I of velocity modification
as,

ui =
(∏

j∈Ci

M̂ij

)
Vi

We note that since matrix multiplication is not commutative, the order in which
we choose the j ∈ Ci will make difference. As for now we choose any arbitrary
order.

8 Stage-II in modifying the velocity of an agent:

As evident from the procedure for velocity modification in Stage-I, it will not
guarantee that a critical edge doesn’t get broken. Hence in this Stage-II of
velocity modification we’ll impose more strict bounds on the velocities.

It is to be understood that all the above mentioned processes, starting from
the estimation of graph adjacency to the modification of velocities, require fi-
nite amount of time. Thus there is a time interval between the issue of two
consecutive velocity commands. In out present problem we’ll assume that this
time interval to be less than an upper bound. We denote this upper bound
by ∆t. Thus we’ll need to figure out an upper bound on the velocity issued
at a particular time step such that by the time the next velocity command is
issued (i.e. after a time interval ≤ ∆t), the critical edges don’t get broken. The
following proposition gives a loose bound on the magnitude of the velocities.
This bound is a sufficient condition for ensuring connectivity of critical edges,
but not a necessary condition.

Proposition: If ∆t is the upper limit of time elapsed between the issue of
kth velocity command and the (k + 1)th velocity command, and if (i, j) was
an estimated critical edge at the time of issue of kth velocity command, then

| vk
i |<

rc−|rk
ij |

2∆t and | vk
j |<

rc−|rk
ij |

2∆t will ensure that the distance between agents
i and j will remain less than rc till the (k+1)th velocity command is issued (i.e.
| r(k+1)

ij |< rc). [Note: Here rk
ij refers to the estimate of the separation vector

that is used for calculation of the kth velocity command, vk
i]

Proof: (i, j) is a critical edge at the kth step implies that | rk
ij |< rc. Now

6

with the given hypotheses we proceed to prove that | r(k+1)
ij |< rc.

We note,

| vk
i |<

rc−|rk
ij |

2∆t and | vk
j |<

rc−|rk
ij |

2∆t

⇒ (| vk
i | + | vk

j |)∆t < rc− | rk
ij |

Again, by using triangular inequality,
| vk

j − vk
i | ≤ | vk

i | + | vk
j |

Thus,
| vk

j − vk
i | ∆t < rc− | rk

ij |
⇒| rk

ij | + | vk
j − vk

i | ∆t < rc

⇒| rk
ij + (vk

j − vk
i)∆t | < rc [Using triangular inequality]

Now we note that,
r(k+1)

ij = x(k+1)
j − x(k+1)

i

= (xk
j + vk

j ∆t)− (xk
i + vk

i ∆t) [Worst case scenario]
= rk

ij + (vk
j − vk

i)∆t

Thus we have proved, | r(k+1)
ij |< rc.

Hence now that we have determined the upper bounds on the velocity magni-
tudes that need to be imposed, we define appropriate scale factors corresponding
to each of the critical edges, and hence scale the velocity obtained from Stage-I
with the smallest scaling factor.

Thus, for agent i, if ui is the velocity after it has been modified by the
Stage-I algorithm, we define scale factors for every j ∈ Ci as follows,

fk
ij =

rc− | rk
ij |

2∆t | uk
i |

And the final velocity command is thus

vk
i = min

{
1, min

j∈Ci

fk
ij

}
uk

i

Such a velocity command will ensure that the velocity commands remain within
the bunds mentioned in the foresaid Proposition.

9 Failure situation - Limitations on the defini-
tion of Critical Edge:

As mentioned previously, our definition for critical edge adjacent to a particular
agent was rather limited. Here we’ll present an example when this definition will
fail to detect edges as critical when the maintenance of those edges would have
been extremely important in maintaining connectivity of the graph. Consider
the situation illustrated by the following figure:

7

~r
c

~r
c

i

j

k

Fig 2: Situation when the algorithm will possibly fail to maintain graph
connectivity

The above figure illustrates a case where the agent i is connecting two compo-
nents of the graph by the edges (i, j) and (i, k). However it doesn’t recognize
either of those two edges to be critical since removing any one of them will not
cause the graph to get disconnected. However here the fact that the lengths
of each of these edges are close to rc makes the situation more demanding. It
may very well happen that by the end of the next time step both the edges get
broken. None of the agents would have tried to maintain these two edges and
hence the graph becomes disconnected.

The obvious possible solution of getting around this problem is to revise the
definition of critical edge so that in situations like these, the edges (i, j) and
(i, k) are also incorporated in the list of critical edges of agents i, j and k. We
may mark all the edges connected to agent i whose lengths are close to rc as
Subcritical edges and denote the set of neighbors making subcritical edges by Si.
Hopefully we can determine an ε such that if | rij |> rc − ε then we incorporate
the agent j into Si. Then find all possible combinations of edges in Si whose
simultaneous breaking will result in the graph being disconnected. Hence we
can include all such edge groups into the list of critical edges of i, Ci.

However at present we haven’t included the above mentioned scheme in our
algorithm for the simulation purpose.

10 Simulation and Results:

We simulated the whole algorithm in MATLAB. The potential field used by
the primary controller is just a simple monotonically increasing function of the
distance of an agent from its goal. We don’t do any collision checking between
the agents, and there is no obstacle in the workspace. The following figures
demonstrate some of the simulation results. Brief description of each of the
results follow.

8

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

X

Y

Number of agents: 6
 Radius over which an agent can communicate: 1.00

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

X

Y

Number of agents: 7
 Radius over which an agent can communicate: 0.80

Fig 3a: Simulation-A Fig 3b: Simulation-B

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

X

Y

Number of agents: 5
 Radius over which an agent can communicate: 1.10

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

X

Y

Number of agents: 5
 Radius over which an agent can communicate: 0.80

Fig 3c: Simulation-C1 Fig 3d: Simulation-C2

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

X

Y

Number of agents: 5
 Radius over which an agent can communicate: 0.60

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

X

Y

Number of agents: 4
 Radius over which an agent can communicate: 0.50

Fig 3e: Simulation-C3 Fig 3f: Simulation-D

9

In each of the above figures, the black ‘+’ denote the goals for the agents.
The red circles mark the final steady-state position of the agents. The curves in
magenta are the trajectories of individual agents. The title of each figure gives
the number of agents and the value of rc for the particular simulation.

Simulation-A shows a case where the two agents at the middle have their goals
so located that if they reach their respective goals, the graph would have become
disconnected. So they started off heading straight towards their goal, but at one
point where the distance of separation between the two middle agents got close
to rc = 1.0, then they started modifying their velocities. Hence they changed
their trajectories and finally reached positions such that the graph remains
connected. As we can observe, in this particular simulation the agents have
reached somewhat close to their optimum positions near their respective goals
that were possible to be reached without sacrificing the graph connectivity.

Simulation-B shows a similar case, but now we have seven agents, and the agent
at the center is connected by two critical edges on either sides. This simulation
illustrates the ability of the algorithm to handle more than one critical edge for
a particular agent.

Simulation-C1 is a simple case where the goals are so located that every agent
can reach their respective goals without sacrificing graph connectivity. Here we
used rc = 1.1.
In Simulation-C2 we reduce the value of rc to 0.8. Here too the agents can reach
their respective goals, but we note that the value of rc is small enough to break
direct connection between the agents at the corners of the square. They use the
agent at the center of the square as an anchor for maintaining connectivity.
In Simulation-C3 we have further reduced the value of rc to 0.6. Now we notice
that not all the agents can any more reach their respective goals without sacri-
ficing graph connectivity. Hence two of the agents stop at points quite far from
their respective goals.

Simulation-D shows a worst case scenario. Here the value of rc = 0.5 is very
small compared to the separation between the goals. Hence at one point when
the agents start moving far from each other rather rapidly, their velocities get
modified abruptly and they finally come to a halt at positions very far from
their respective goals. This particular simulation clearly demonstrates that our
algorithm may not give the near-optimum solution under many such circum-
stances.

11 Conclusion and possibility for future works:

In the present work we have been able to develop a framework for a very el-
ementary algorithm that will be able to attach itself as a secondary controller
alongside the primary controllers for mobile agents in order to ensure that the
connectivity of the network does not get broken. Although the present algorithm
is not quite robust or optimum, we have already figured out the drawbacks and
are on our way towards finding solutions for overcoming them. As already men-
tioned within the paper, there are several places in the present algorithm that
requires immediate attention and improvement.

The most important one being the definition of critical edges. We will try

10

to follow the steps mentioned under Section 9 in order to broaden the scope of
critical edges and hence make the algorithm more robust.

The next important and demanding modification is to ensure that the algo-
rithm returns a more optimum result. The illustration in simulation-D shows
that in particular cases where the distance of separation between the goals are
much greater than rc, our algorithm performs in a rather inefficient manner.

12 Acknowledgement:

I would like to thank Professor Ali Jadbabaie, Department of Electrical and Sys-
tems Engineering, University of Pennsylvania, for his kind and valuable advices
which made this work possible.

13 References:

[1] A. Tahbaz Salehi and A. Jadbabaie, A one-parameter family of distributed
consensus algorithms with boundary: from shortest paths to mean hitting
times, Proceedings of the IEEE Conference on Decision and Control, San
Diego, CA, December 2006.

[2] M. C. De Gennaro and A. Jadbabaie, Decentralized Control of Connectiv-
ity for Multi-Agent Systems, IEEE Conference on Decision and Control,
San Diego, CA. December 2006.

[3] Ali Jadbabaie, Jie Lin, and A. Stephen Morse, Coordination of Groups of
Mobile Autonomous Agents Using Nearest Neighbor Rules, IEEE Trans-
action on Automatic Control, Vol. 48, No. 6, 2003.

11

