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1. Introduction

1.1. SLAM definition

Simultaneous Localization And Mapping had be one of the most challenging problems in robotics. The 
problem is significantly more difficult than individual problems concerning localization in a known 
environment or mapping where the global position of the robot is known all the time. Below are listed 
some of the most evident challenges in this problem:

1. The problem of error accumulation in mapping and localization is pretty much intertwined. 
Errors  in  mapping  result  in  wrong  localization,  and  error  in  localization  results  in  wrong 
mapping. Thus once the error is initiated it will start growing uncontrollably.

2. The above mentioned error makes it difficult to identify new obstacles from the ones that has 
already been visited. This is typically called the “loop closure” problem.

Typically in a SLAM problem the only sensor available to a robot is an on-board Laser range sensor. 
There is no GPS or Truth information available.

1.2. SLAM tasks

The tasks of a robot performing SLAM typically involve:
i. Generation of a map of the environment in the local initial coordinate system of the robot.
ii. Localization of itself in the map (i.e. to determine it's own position in its local, initial coordinate 

frame.)
iii. To ensure good coverage of the environment.

2. Configuration space and Feature space

For a mobile robot the configuration space is typically the SO(2) space. Any point in that space is 
represented by the tuple (x,y,θ).
The configuration space on the other hand is the space of features observed by the robot. Hence if the 
on-board laser range sensor of the robot has n scan rays, a point in the feature space may be represented 
by an n-tuple, each value of which represent a range value returned by the laser range sensor.

It is quite evident that the mapping from the Configuration space to the Feature space for a mobile 
robot is a surjection. However in presence of errors this mapping become quite complex. However 
there appears a rather interesting pattern in it which is worth investigation. Below are some discussions 
on it just to create some insight into the problem and understand what we can solve and what we 
cannot.



Figure 1

In Figure 1 the first row shows the map as generated by the robot for an environment described by the 
obstacles O1 and O2 as shown in the bottom row. The assumption here is that O1 and O2 are quite far 
from each other and hence one is not visible when the robot is near the other. The grids shown in the 
map generated by the robot is the mapping of an uniform grid in the real world. The stretching had 
taken place because of errors like slippage. However there is actually no way for the robot to identify 
the stretching and hence correcting its map. At the beginning the robot could localized itself near O1, 
and it could also localize itself finally near and with respect to O2 . However the errors accumulated in 
between the two obstacles are not quite easy to correct unless both the obstacles are visible to the robot 
at the same time.

It may be interesting to note that Q1 and R1 are close to each other both in the Configuration space as 
well as the Feature space. However  Q2 and  R2 are actually close to each other in the Feature space, 
although  they  are  far  from  each  other  in  the  Configuration  space.  This  insight  will  help  us  in 
understanding what we can solve and what is not solvable in SLAM.

The error resulting in difference between the estimated position of the robot in the Configuration space 
and it's actual position in the Configuration space causes a significant problem in “loop closure”, where 
we fail to identify new obstacles from the previously seen ones because of the error accumulation on 
the way. One possible solution is to move to and fro between obstacles to filter out the error in the 
separation between them. However that may not be a feasible solution since this error (caused by 
slippage,  etc.)  are  generally biased.  Moreover  as  discussed before,  it  may not  be even possible to 
estimate the unbiased relative positioning between the obstacles.  Probably the best  solution to this 
problem is just not to worry too much about the error. Instead we can just try to be consistent with the 
errors. That means for our estimate we just try to have a consistent separation between the obstacles, 
rather than trying to estimate the actual separations. The consistency may actually be checked and 
performed upon loop closure.
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3. Standard methods of performing SLAM

The different ways of performing SLAM include
i. EKF SLAM
ii. Graph SLAM
iii. Fast SLAM

In this project we concentrated on Fast SLAM. Fast SLAM is the particle filter approach to SLAM. 
Even among Fast SLAM there are several variations. Although we followed the very basic outline of 
Fast SLAM in an environment with unknown correspondences using an occupancy grid, we have made 
several  changes  to  the  original  algorithm and approach,  the  most  important  one  being  the  use  of 
geometric primitives or 'elements'  for representing the environment rather than using an occupancy 
grid.

The standard structure of a Fast SLAM algorithm is quite similar to a that of a simple particle filter, 
except  for  the fact  that  now the individual  particles maintain their  individual  maps and they keep 
updating their own maps based on the sensor data.

4. Use of geometric elements instead of occupancy grid

4.1  Advantages  and  disadvantages  of  a  geometric  representation  over  occupancy  grid  based 
representation

Advantages of occupancy grid:
 Easy to add data points
 Easy to detect inconsistencies using visibility, occlusion, etc
 Quick to add new scan data

Disadvantages of occupancy grid:
 Consumes huge memory
 Depends on resolution of discretization
 Probably  difficult  to  combine/communicate  with  different  occupancy  grids  (from  different 

particles)

Why geometric elements?
 Easy and efficient to store
 Easy path planning using visibility graph,  voronai diagrams, etc which are less computationally 

expensive
 Elements are more flexible to changes/updates in the map
 I liked this approach more and wanted to do it for the project

Disadvantages of geometric elements:
 Lots of geometry involved
 Updating of the elements need to be done carefully
 Checks for inconsistency needs to be done in geometric way



4.2. The basic algorithm:

Having said all the above, we present our basic algorithm structure for performing Fast SLAM using 
geometric elements rather than occupancy grids.

Below is a highly simplified pseudo-algorithm representation of the algorithm:
_______________________________________________________________________________

Initiate Particles (N particles) at coordinates (0,0,0) and an empty map for each

while (TRUE)

Compute a path and determine velocities to set based on the pose and map of the particle 
with the highest weight.

Propagate the particles with the last velocity commands since the last time they were set. The 
propagation is done with some added noise.

Set the new velocity commands

Slow down before obtaining laser scan
– this requires particle propagation step to be called once again

Obtain laser scan data
Segment the laser scan data into clusters (from the different obstacles)
Enew = Fit 'elements' (line segments) to the clusters from laser scan

For p = each of the N particle
Transform Enew to particles coordinate frame to obtain Ep

new
 

For e = each element in Ep
new

For f = each element already present in the particle p's map, Mp

d(e,f) = Compute distance (Euclidean distance + orientation difference) 
between elements e and f

end
 

Perform a maximum likelihood estimate for the element e so as to determine
a f such that d(e,f) is minimum among all the computed d(e,f).

 

If this d(e,f) is less than some threshold,
Update element f in Mp with the information of e

else
Add new element e to Mp

end
end
 

For particle p determine a weight w for this particular session of adding/updating 
elements depending on the values of d(e,f).

end

Clean the maps of the particles by removing redundant or bad elements
 



Update particle weights: wP
i = wP

i  * wi 

Perform an importance re-sampling based on the updates particle weights

end
_______________________________________________________________________________

4.3. Results and drawbacks

The above algorithm works well as long as there is no need to look back at the obstacles previously 
seen by the robot. However as soon as the robot encounters an obstacle that it has previously seen, but 
now it  thinks it  to be at  a  different  location (because of the errors  accumulated in between),  two 
devastating consequences take place:

i. Either the previously mapped obstacle elements start  deforming really bad because the new 
obstacle element tries to merge with it, or

ii. The previous obstacle element is recreated near its original position.

The following pictures illustrate the problem:

Figure 2a
Figure 2b



In figure 2a we observe that although there are some global deformations the obstacles are pretty much 
in their place as the robot is moving ahead without looking back.
However  as  soon  as  the  robot  starts  heading  back in  figure  2b and  encounters  a  previously seen 
obstacle, the map pf the winning particle starts deforming.

5. Maintaining a Global Map/World

5.1. The need for a global map – particles communicating with each other

The idea for maintaining a global map by communicating between the particles was inspired by the fact 
that at some instants a particle (or its descendants) may be at a good position/having good weight, and 
at other instant some other particle (or its descendants) may be at a good position/having good weight.

5.2. Changes in the algorithm

Thus the need to take advantage of best information contained by any particle at any instant seems to 
be quite indispensable.
Hence we made some small changes in the algorithm described previously, where we do the following 
additional things:

i. Assign weights to each element of each of the maps maintained by the particles. Where weights 
are computed based on how well new laser scans have matched with the element. Moreover 
there are some preferences being given to older and 'trusted' elements.

ii. Compute a global world map out of the maps of the individual particles. The choice of which 
element to be selected from which particle's world map is made based on the weights computed 
in the above step.

iii. Update the maps of the individual particles using the global world map just created.
iv. Compute velocities based on this global map instead of the map of the winning particle

5.2. Results and drawbacks

This change evidently had a positive effect on the maintenance of the map. The map looked more 
stable  and consistently stayed quite  accurate  for  a  longer  period of  time.  However  even with this 
method implemented, because of the error accumulated over time the particle filter performed a wrong 
localization when it saw an obstacle it had seen before:

The figures in next page illustrate the problems:



Figure 3a: Better performance while returning back

Figure 3b: Still a obstacle element is re-located wrongly

Figure 3c: Particle filter goes crazy because of inconsistencies



6. Particle generation based on the geometric features of the Global map

6.1. Why simple particle re-sampling doesn't work well in SLAM

Particle filter relies on the fact that the actual position of the robot will be somewhat close to the 
present estimate (in Feature space). Thus on scattering enough particles around the estimated position 
we expect to get a particle which represents the position of the particle in the Feature space quite 
accurately.
However the problem will arise if somehow the actual position of the robot is somewhere far from the 
estimate even in the feature space. Then the particles scattered around the estimated position are all far 
away from the actual position, and hence won't be able to localize the robot. This situation arises quite 
easily in SLAM when doing a “loop closure”.

When the robot suddenly re-encounters an obstacle it has seen much earlier, it needs to localize itself 
with respect to that obstacle. However if the particles scattered by the particle filter does not generate 
any particle at the position where the robot is actually in the feature space, then we won't be able to 
capture the actual position of the robot.

6.2. The solution

The very evident and easy solution to this problem is to manually add a few particles by looking at the 
geometric features of the latest scan and comparing them with those of the global map. The following 
figure explains this concept with a simple example:

            Local scan                                                          Positions in Global map
 

Figure 4

Thus  the  simple  solution  is  to  geometrically  identify  the  likely  positions  by  using  the  geometric 
properties of the global map, and scatter a few particles (in practice, one each) at those locations.
However in practice we did this using only those elements of the global world which are sufficiently 
reliable.  Reliability was  measured  by age  of  the  element  as  well  as  how many times  it  has  been 
updated.

The details of the geometric procedures for identifying the most likely positions are not discussed here, 
although they are quite straight forward.

This will fail!This will work!
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6.3. Final Results

The following figures shows the final map created by the robot in 2 different runs after wandering 
around for significantly longer period of time than the previous examples:



7. Conclusions

7.1. Observations

We do not observe major inconsistencies in the map after we implemented the concepts described 
under sections 5 and 6.

7.2. Plans for future works

● Test the algorithm on more challenging and bigger environments
● Implement better methods for identifying inconsistencies in the map
● Have multiple robots perform SLAM and send their individual maps to a centralized system. 

The centralized system will then stitch the maps to generate a global map
● Implement the algorithms on actual robots


