
Fast SLAM using a geometric approach
and some unconventional methods

MEAM 620 final project

Subhrajit Bhattacharya

1. Introduction

1.1. SLAM definition

Simultaneous Localization And Mapping had be one of the most challenging problems in robotics. The
problem is significantly more difficult than individual problems concerning localization in a known
environment or mapping where the global position of the robot is known all the time. Below are listed
some of the most evident challenges in this problem:

1. The problem of error accumulation in mapping and localization is pretty much intertwined.
Errors in mapping result in wrong localization, and error in localization results in wrong
mapping. Thus once the error is initiated it will start growing uncontrollably.

2. The above mentioned error makes it difficult to identify new obstacles from the ones that has
already been visited. This is typically called the “loop closure” problem.

Typically in a SLAM problem the only sensor available to a robot is an on-board Laser range sensor.
There is no GPS or Truth information available.

1.2. SLAM tasks

The tasks of a robot performing SLAM typically involve:
i. Generation of a map of the environment in the local initial coordinate system of the robot.
ii. Localization of itself in the map (i.e. to determine it's own position in its local, initial coordinate

frame.)
iii. To ensure good coverage of the environment.

2. Configuration space and Feature space

For a mobile robot the configuration space is typically the SO(2) space. Any point in that space is
represented by the tuple (x,y,θ).
The configuration space on the other hand is the space of features observed by the robot. Hence if the
on-board laser range sensor of the robot has n scan rays, a point in the feature space may be represented
by an n-tuple, each value of which represent a range value returned by the laser range sensor.

It is quite evident that the mapping from the Configuration space to the Feature space for a mobile
robot is a surjection. However in presence of errors this mapping become quite complex. However
there appears a rather interesting pattern in it which is worth investigation. Below are some discussions
on it just to create some insight into the problem and understand what we can solve and what we
cannot.

Figure 1

In Figure 1 the first row shows the map as generated by the robot for an environment described by the
obstacles O1 and O2 as shown in the bottom row. The assumption here is that O1 and O2 are quite far
from each other and hence one is not visible when the robot is near the other. The grids shown in the
map generated by the robot is the mapping of an uniform grid in the real world. The stretching had
taken place because of errors like slippage. However there is actually no way for the robot to identify
the stretching and hence correcting its map. At the beginning the robot could localized itself near O1,
and it could also localize itself finally near and with respect to O2 . However the errors accumulated in
between the two obstacles are not quite easy to correct unless both the obstacles are visible to the robot
at the same time.

It may be interesting to note that Q1 and R1 are close to each other both in the Configuration space as
well as the Feature space. However Q2 and R2 are actually close to each other in the Feature space,
although they are far from each other in the Configuration space. This insight will help us in
understanding what we can solve and what is not solvable in SLAM.

The error resulting in difference between the estimated position of the robot in the Configuration space
and it's actual position in the Configuration space causes a significant problem in “loop closure”, where
we fail to identify new obstacles from the previously seen ones because of the error accumulation on
the way. One possible solution is to move to and fro between obstacles to filter out the error in the
separation between them. However that may not be a feasible solution since this error (caused by
slippage, etc.) are generally biased. Moreover as discussed before, it may not be even possible to
estimate the unbiased relative positioning between the obstacles. Probably the best solution to this
problem is just not to worry too much about the error. Instead we can just try to be consistent with the
errors. That means for our estimate we just try to have a consistent separation between the obstacles,
rather than trying to estimate the actual separations. The consistency may actually be checked and
performed upon loop closure.

Mapping
of coordinate
grid (robot
does not
know about
this grid
mapping)

obstacle shift

stretching of coordinate grid
due to errors/slippage

Map
maintained
by robot
(overlaid on
actual
world grid)

The actual
world in
robot's
initial local
coordinate
frame O1

O2

O1

O2

O1

O2

initial final

Robot's path
as estimated
by the robot

Q1

Q2

O1

R1

Robot's actual
path

R2

3. Standard methods of performing SLAM

The different ways of performing SLAM include
i. EKF SLAM
ii. Graph SLAM
iii. Fast SLAM

In this project we concentrated on Fast SLAM. Fast SLAM is the particle filter approach to SLAM.
Even among Fast SLAM there are several variations. Although we followed the very basic outline of
Fast SLAM in an environment with unknown correspondences using an occupancy grid, we have made
several changes to the original algorithm and approach, the most important one being the use of
geometric primitives or 'elements' for representing the environment rather than using an occupancy
grid.

The standard structure of a Fast SLAM algorithm is quite similar to a that of a simple particle filter,
except for the fact that now the individual particles maintain their individual maps and they keep
updating their own maps based on the sensor data.

4. Use of geometric elements instead of occupancy grid

4.1 Advantages and disadvantages of a geometric representation over occupancy grid based
representation

Advantages of occupancy grid:
 Easy to add data points
 Easy to detect inconsistencies using visibility, occlusion, etc
 Quick to add new scan data

Disadvantages of occupancy grid:
 Consumes huge memory
 Depends on resolution of discretization
 Probably difficult to combine/communicate with different occupancy grids (from different

particles)

Why geometric elements?
 Easy and efficient to store
 Easy path planning using visibility graph, voronai diagrams, etc which are less computationally

expensive
 Elements are more flexible to changes/updates in the map
 I liked this approach more and wanted to do it for the project

Disadvantages of geometric elements:
 Lots of geometry involved
 Updating of the elements need to be done carefully
 Checks for inconsistency needs to be done in geometric way

4.2. The basic algorithm:

Having said all the above, we present our basic algorithm structure for performing Fast SLAM using
geometric elements rather than occupancy grids.

Below is a highly simplified pseudo-algorithm representation of the algorithm:

Initiate Particles (N particles) at coordinates (0,0,0) and an empty map for each

while (TRUE)

Compute a path and determine velocities to set based on the pose and map of the particle
with the highest weight.

Propagate the particles with the last velocity commands since the last time they were set. The
propagation is done with some added noise.

Set the new velocity commands

Slow down before obtaining laser scan
– this requires particle propagation step to be called once again

Obtain laser scan data
Segment the laser scan data into clusters (from the different obstacles)
Enew = Fit 'elements' (line segments) to the clusters from laser scan

For p = each of the N particle
Transform Enew to particles coordinate frame to obtain Ep

new

For e = each element in Ep
new

For f = each element already present in the particle p's map, Mp

d(e,f) = Compute distance (Euclidean distance + orientation difference)
between elements e and f

end

Perform a maximum likelihood estimate for the element e so as to determine
a f such that d(e,f) is minimum among all the computed d(e,f).

If this d(e,f) is less than some threshold,
Update element f in Mp with the information of e

else
Add new element e to Mp

end
end

For particle p determine a weight w for this particular session of adding/updating
elements depending on the values of d(e,f).

end

Clean the maps of the particles by removing redundant or bad elements

Update particle weights: wP
i = wP

i * wi

Perform an importance re-sampling based on the updates particle weights

end

4.3. Results and drawbacks

The above algorithm works well as long as there is no need to look back at the obstacles previously
seen by the robot. However as soon as the robot encounters an obstacle that it has previously seen, but
now it thinks it to be at a different location (because of the errors accumulated in between), two
devastating consequences take place:

i. Either the previously mapped obstacle elements start deforming really bad because the new
obstacle element tries to merge with it, or

ii. The previous obstacle element is recreated near its original position.

The following pictures illustrate the problem:

Figure 2a
Figure 2b

In figure 2a we observe that although there are some global deformations the obstacles are pretty much
in their place as the robot is moving ahead without looking back.
However as soon as the robot starts heading back in figure 2b and encounters a previously seen
obstacle, the map pf the winning particle starts deforming.

5. Maintaining a Global Map/World

5.1. The need for a global map – particles communicating with each other

The idea for maintaining a global map by communicating between the particles was inspired by the fact
that at some instants a particle (or its descendants) may be at a good position/having good weight, and
at other instant some other particle (or its descendants) may be at a good position/having good weight.

5.2. Changes in the algorithm

Thus the need to take advantage of best information contained by any particle at any instant seems to
be quite indispensable.
Hence we made some small changes in the algorithm described previously, where we do the following
additional things:

i. Assign weights to each element of each of the maps maintained by the particles. Where weights
are computed based on how well new laser scans have matched with the element. Moreover
there are some preferences being given to older and 'trusted' elements.

ii. Compute a global world map out of the maps of the individual particles. The choice of which
element to be selected from which particle's world map is made based on the weights computed
in the above step.

iii. Update the maps of the individual particles using the global world map just created.
iv. Compute velocities based on this global map instead of the map of the winning particle

5.2. Results and drawbacks

This change evidently had a positive effect on the maintenance of the map. The map looked more
stable and consistently stayed quite accurate for a longer period of time. However even with this
method implemented, because of the error accumulated over time the particle filter performed a wrong
localization when it saw an obstacle it had seen before:

The figures in next page illustrate the problems:

Figure 3a: Better performance while returning back

Figure 3b: Still a obstacle element is re-located wrongly

Figure 3c: Particle filter goes crazy because of inconsistencies

6. Particle generation based on the geometric features of the Global map

6.1. Why simple particle re-sampling doesn't work well in SLAM

Particle filter relies on the fact that the actual position of the robot will be somewhat close to the
present estimate (in Feature space). Thus on scattering enough particles around the estimated position
we expect to get a particle which represents the position of the particle in the Feature space quite
accurately.
However the problem will arise if somehow the actual position of the robot is somewhere far from the
estimate even in the feature space. Then the particles scattered around the estimated position are all far
away from the actual position, and hence won't be able to localize the robot. This situation arises quite
easily in SLAM when doing a “loop closure”.

When the robot suddenly re-encounters an obstacle it has seen much earlier, it needs to localize itself
with respect to that obstacle. However if the particles scattered by the particle filter does not generate
any particle at the position where the robot is actually in the feature space, then we won't be able to
capture the actual position of the robot.

6.2. The solution

The very evident and easy solution to this problem is to manually add a few particles by looking at the
geometric features of the latest scan and comparing them with those of the global map. The following
figure explains this concept with a simple example:

 Local scan Positions in Global map

Figure 4

Thus the simple solution is to geometrically identify the likely positions by using the geometric
properties of the global map, and scatter a few particles (in practice, one each) at those locations.
However in practice we did this using only those elements of the global world which are sufficiently
reliable. Reliability was measured by age of the element as well as how many times it has been
updated.

The details of the geometric procedures for identifying the most likely positions are not discussed here,
although they are quite straight forward.

This will fail!This will work!

50 cm 50 cm
Estimated
position

Particles
Most likely
position

Actual
position

6.3. Final Results

The following figures shows the final map created by the robot in 2 different runs after wandering
around for significantly longer period of time than the previous examples:

7. Conclusions

7.1. Observations

We do not observe major inconsistencies in the map after we implemented the concepts described
under sections 5 and 6.

7.2. Plans for future works

● Test the algorithm on more challenging and bigger environments
● Implement better methods for identifying inconsistencies in the map
● Have multiple robots perform SLAM and send their individual maps to a centralized system.

The centralized system will then stitch the maps to generate a global map
● Implement the algorithms on actual robots

