
Sensor Coverage by Robot Swarms Using Local Sensing
without Metric Information

Rattanachai Ramaithitima, Michael Whitzer, Subhrajit Bhattacharya and Vijay Kumar *

Abstract— We consider the problem of deploying a swarm
of mobile robots into an unknown environment for attaining
complete sensor coverage of the environment. The robots
have limited and noisy sensing capabilities and no metric
or global information available to them. Using tools from
algebraic topology, we formally describe the sensor coverage
as a simplicial complex, deploy robots through the complex
using bearing-based local controllers, and attain coverage while
identifying and removing sensor redundancies. Despite the
highly limited sensing capabilities and complete lack of global
localization and metric information, we demonstrate that the
proposed algorithm is complete, always terminates in a finite-
sized environment, is guaranteed to attain complete coverage
and is robust to sensor failures. The algorithm presented in
this paper was demonstrated through simulation and proves to
effectively cover and explore unknown indoor environments.

I. INTRODUCTION
A. Motivation and Related Work

Sensor coverage of indoor environments using teams of
mobile robots is a well-studied problem in robotics. Cover-
age path planning refers to the task of visiting every point
(or within a certain distance of every point) in a given
environment as has been addressed in [1], [2], [3]. In the
present context however, we focus on attaining coverage
by a sensor network, which is the task of deployment and
distribution of a team of robots such that they attain and
maintain constant sensory coverage of every point in the en-
vironment. In presence of limited number of robots this prob-
lem has often been handled using Voronoi partition of the
environment and minimization of a coverage functional [4],
[5]. However such approaches invariably rely on a global
and centralized localization capability for each robot (for
example, using GPS). Complete sensor coverage of indoor
environments using swarm of robots have been studied in [6],
[7], where the known world is modeled as a graph, robots
are assumed to have global localization and can be made
to navigate independently from one location to another in a
global coordinate frame. In almost all these lines of research,
global localization of the robots, a priori knowledge of the
environment (obstacle configurations), availability of metric
information and ability to control the robots from one point
in the environment to another have been assumed.

Biologically inspired multi-robot coverage algorithms
have also been proposed [8], [1], which are most often dis-
tributed and the robots rely on local sensing only. Similar lo-

*University of Pennsylvania. [ramar,mwhitzer,subhrabh,
kumar]@seas.upenn.edu. The authors gratefully acknowledge the
support of AFOSR grant FA9550-10-1-0567, ONR grants N00014-07-1-
0829, N00014-09-1-1051, and N00014-09-1-103.

cal communication-based algorithms for robot swarms have
been used to construct various shapes [9] in an environment.
However, such behavior-based algorithms come with very
limited theoretical guarantee. Likewise, distributed coverage
algorithm with no global localization have been studied in
[10]. But the notion of coverage being purely based on a
graph gives limited to no guarantee on the attainment of sen-
sor coverage or the optimality. Furthermore such approaches
inherently assume availability of some metric information.

In recent years coverage by sensor network has been
studied more formally using simplicial complex and ho-
mological tools from algebraic topology [11], [12]. Such
approaches are completely topological and require little to
no metric information. In general, homology computation has
been extremely useful in detecting holes in sensor network
coverage. While some progress has indeed been made in
controlling the network so as to mend the holes in sensor
coverage [13], [14], all these methods work only in obstacle-
free environments and require some localization of the robots
for being able to control them.

Closely related to our work is the literature of explo-
ration of unknown environment without global localization.
Simultaneous Localization and Mapping (SLAM) [15] re-
quires a robot (or a group of robots) to navigate in an
environment acquiring range measurements (to obstacles),
and then stitch the collected data to construct a complete map
of the environment. This process is however quite complex
and requires significant amount of computation. We assume
limited computation power on each robot, and having a
swarm of roots at our disposal and sensor coverage of the
environment being the primary objective, we do not perform
a full-blown SLAM. The robots’ sensor capabilities are also
limited compared to what is typically required by SLAM.

A similar research conducted by Lee, et al. [16] studies
the problem of maximization of coverage area with limited
number of robots equipped with limited local sensors. How-
ever, our approach is different, and performs better, in at least
three aspects: First, our proposed method is robust to robot
failure and can start from an arbitrary configuration of the
robots, since the computations at every iteration are purely
based on the current state only. Second, our approach of
“pushing” the robots through the graph in order to expand
the frontier to the unknown regions, instead of navigate a
robot from the source to the frontier, has a lower execution
time at each cycle, and does not require any restriction on the
minimum distance between two neighboring robots. Lastly,
our proposed algorithm does not require the workspace to be



simply-connected, as we demonstrate through experimental
results in complex, indoor environments with obstacles.

We adopt a simplicial complex representation (in par-
ticular, a Rips complex) as the richer and more formal
description of the sensor coverage, without using metric
information, to solve the problem of deployment of robots
in an unknown environment without global localization.
The robots only have onboard sensors to measure bearings
to neighboring robots in their local coordinates and touch
sensors for collision avoidance. Such limited sensing data
essentially allows deployment of robots in a dark room, with
the robots using their camera to identify their neighbors by
illuminated (LED) markers on each other. Since our approach
is fundamentally topological, the proposed method is highly
robust to sensor noise. We attain complete sensor coverage
of the entire finite environment assuming sufficient number
of available robots, along with guarantees on coverage,
exploration and a notion of local optimality.
B. Problem Description

We consider the problem of efficiently exploring an un-
known indoor environment with a rapidly expanding swarm
of robots with limited and noisy local sensing with no global
localization or sensing capabilities. In particular, the only
sensory capabilities that we assume on each robot are those
of an omni-directional camera with a limited radial range
of vision and a touch sensor to detect contact/collision with
obstacles and other robots. We call the disk around a robot,
representing a sensing radius of the omni-directional camera,
the robot’s disk of visibility, within which the bearing to
the neighboring robots and their identities can be detected.
However, the camera does not provide a range measurement
due to projection of the spacial world on to the camera plane.
Thus, obstacles are detected through touch sensors near the
base of the robots, and cannot be detected using the camera.
The robots can also communicate with each other and with
a central router through wireless communication. The robots
are assumed to holonomic (i.e. can be driven in arbitrary
direction). We assume that there are sufficiently large number
of robots available, which are being deployed from one or
multiple sources (e.g. entrance to an environment).

The contribution of this paper is to design a distributable
control algorithm for the robots such that they deploy them-
selves to attain hole-less coverage of the entire environment
using their disks of visibility. That means, at least one
robot should be able to see each and every point in the
environment after the coverage is attained. However, the only
information that they have are the bearing to their neighbors
in their respective local coordinate frames and a directional
touch information with obstacles. This means that there is
absolutely no metric information available.

II. PRELIMINARIES
A. Notations

We denote by W ⊂ R2 the obstacle-free region where the
robots are being deployed and the sensor coverage of which
needs to be attained. If there are n robots deployed in W ,
we assign IDs to them, 1, 2, · · · , n, and represent their joint
configuration by X = [x1, x2, · · · , xn], xi ∈W .

Hole

Fig. 1. Illustration of a swarm of robots entering an environment and
attaining coverage. The hole shown on the right figure is something we
would like to avoid.

A robot, i, can measure the bearing to a neighbor, j ∈ Ni,
in its local coordinates, where Ni = {j | ‖xi−xj‖ ≤ rv} are
the neighbors of i. We call this measurement θij ∈ [−π, π).
If it measures the bearing to another robot, k as θik, then we
define θijk =

(
(θik − θij) mod 2π

)
−π — i.e., the bearing

to k relative to the bearing to j (and the angle converted to
a value in [−π, π)).

B. Vietoris–Rips Complex of Camera Sensing Footprints

We do not assume that the robots can localize themselves
and the only way of sensing/identifying neighbors is by
using the camera. Thus, if the disks of visibility of two
robots merely overlap, there is no way of detecting that fact
(Figure 2(a)). We need to use a stronger notion of overlap
— two robots know that their disks of visibility overlap if
and only if they are in each other’s disks of visibility and
their line of sight is not blocked (Figure 2(b)).

1 2

(a) Robots can’t see each other,
and hence have no way of de-
tecting that their disks of visi-
bility overlap.

1 2

(b) Robots can see each other, and
hence know that their disks of vis-
ibility overlap. Visibility is repre-
sented by the dotted magenta line.

Fig. 2. Detection of overlap of disks of visibility using only local visibility-
based sensing.

We can thus consider a simplicial complex [17] repre-
sentation of the free space that the camera footprints cover.
The description of the abstract simplicial complex goes as
follows (Figure 3): We add one 0-simplex to the complex for
every deployed robot in the environment (the 0-simplices are
identified by the robot IDs). A 1-simplex is added between
two 0-simplices if the corresponding robots are in each
other’s disk of visibility (i.e., are within distance of rv from
each other) and can see each other. A 2-simplex is added
to the complex for every 3-tuple of robots that can all see
each other (and hence their disks of visibility has a non-
empty intersection). We do not construct any 3 or higher
dimensional simplices since on a planar environment with
obstacles, we are only concerned with the H1 homology.

1 2

3

4

5

9

6

7

8

1
2

3

4

5 6

7

8

9

Fig. 3. Nine robots, their disks of visibility and the corresponding abstract
simplicial complex, Rrv .



This simplicial complex is, by definition, the Vietoris-
Rips complex [11] (or simply the Rips complex) on the
set of robots (constructed up to dimension 2 – i.e., we
do not construct the 3 and higher simplices), with distance
between pairs of robots being the length of the unobstructed
line segment connecting them (and a distance being infinity
if such a line segment does not exist due to presence of
obstacles) and the parameter for the Rips complex being rv .
For a particular joint configuration of the robots, X , we call
this simplicial complex Rrv (X). We denote the 0-simplices
in Rrv (X) by the corresponding robot ID (e.g., ‘i’), the
1-simplices by pairs of IDs of the robots that make them
up (e.g., {i, j}), and 2-simplices by three tuples (such as
{i, j, k}). Formally, Rrv (X) is a chain complex [17] and
constitutes of a sequence of modules (or vector spaces)
along with boundary maps: 0

0−→ C2
∂2−→ C1

∂1−→ C0
0−→ 0,

where Cd is an abstract module (or vector space) generated
(or spanned) by the d-dimensional simplices. Whenever
the robots’ configuration, X , is obvious or implied by the
context, we will write Rrv to denote the corresponding
complex for simplicity. In Section III-A we will identify two
sub-complexes of Rrv , namely the frontier subcomplex, F ,
and obstacle subcomplex, O, which together constitute the
fence subcomplex [11], K = F ∪O.

It is important to note that Rrv can be constructed with
local visibility information only, as described earlier, and
does not require the entire configuration, X , of the robots
to be known in a centralized manner. Furthermore, as will
be evident in the next section, we do not need to construct
the entire simplicial complex in a centralized fashion for
most of the algorithmic components. It’s only when we
compute generators for the relative homology H2(Rrv ,K),
for optimization purposes, that we will need to store Rrv in
a centralized manner.
C. Contact/Touch Sensing Model

As mentioned earlier, the only sensors on board each
robot are the omnidirectional camera and a collection of
touch/contact sensors at the base of the robots. The camera
is used to measure bearing with other robots inside the
disk of visibility and is incapable of measuring range. The
touch sensors are binary sensors, and are triggered when in
contact with an obstacle/wall or another robot (Figure 4).
The presence of multiple touch sensors (NT counts of them)
at the base also provides a rough estimate of direction of
contact (within an error of τ = π

NT
when a single touch

sensor is activated).

Fig. 4. The touch/contact sensors (gray protrusions) at the base of a robot
(red). Contact with an obstacle or another robot triggers one or more touch
sensors providing a rough estimate of the direction of contact.

D. Local Bearing-Based Controller
The robots are controlled using the bearing-based visual

homing controller presented in [18]. This controller utilizes

a gradient decent approach where desired bearing angles to
landmarks are used to drive robots. The distances between a
robot and its respective landmarks are not known. The only
information known are the bearing angles, as is consistent
with the assumptions in our paper. With the proper selection
of the cost functional for the optimization process, the
gradient of the path from start to goal (the velocity control
command for robot i) is given by vi = K

∑
j∈Li(θij,des−θij),

where, Li is the list of robots that are neighbors of i,
and which can be used as landmarks, θij,des is the desired
bearings with landmark j, and K is a gain. Note that
this velocity can be computed in the instantaneous local
coordinate frame of the robot i. This controller converges
to the goal configuration when the number of landmarks is
greater than or equal to two and not co-linear with the goal
location. In our implementation, the controller incorporates
adaptive gain scaling in order to obtain faster convergence.
We also use adaptive landmark detection depending on a
robot’s neighbor list while moving.

E. Relative H2 Homology
We periodically compute a non-trivial 2-cycle of the

relative complex (Rrv ,K) so that we can identify redun-
dant/extra robots that can be removed from the complex
without sacrificing sensor coverage. This is a direct applica-
tion of the result in [11]. We assume some familiarity with
algebraic topology and homology theory for the discussion
in this section [17]. Given the simplicial complex, Rrv , and
the fence subcomplex, K = F ∪ O, one can construct a
relative chain complex, C∗(Rrv ,K). This, in essence, is
the complex obtained by quotienting out the subcomplex
K (i.e., collapsing K to a single point, or introducing a
new 0-simplex, Q, and connecting 2-simplices {i, j, Q} to
every {i, j} ∈ K – as illustrated in Figure 5). Due to a
result from [11], if we can find a non-trivia relative cycle in
C2(Rrv ,K) such that it passes through all the 0-simplices
in the fence, K, then the 0-simplices (the robots) making up
that cycle is sufficient for maintaining the sensor coverage.
All other robots can be reallocated.

8

12
10

11

6

7
3

2

1

9

54

13

(a) A Rips complex, Rrv , with the
frontier subcomplex, F , marked in
cyan, and the obstacle subcomplex,
O, marked in brown.

Q

8

12

10

11

6

7
3

2

1

9
54

13

(b) Topology of the space where the
entire fence complex, F ∪ O, have
been connected through 2-simplices
to an external 0-simplex, namely Q.

Fig. 5. An example where a redundant robot (#10) can be identified from
a non-trivial cycle in the space constructed by connecting all the fence
simplices to a single external 0-simplex.

III. ALGORITHM DESIGN
The outline of our swarm coverage algorithm is presented

in Algorithm 1. We begin by deploying robot 1 into the
unknown environment using an open-loop control so that it
maintains visual contact with the source/base. Then, in line 3,



we start our deployment cycle by constructing the Rips
complex in a distributed manner as described in Section II-B
(and Algorithm 2). Using the current Rips complex Rrv , we
update the frontier, F , and obstacle,O, subcomplexes (line 4,
and Algorithm 3) along with computing the target location
for deployment of the new robot in the local coordinates of
a frontier robot. Note that at the end of the first deployment,
the robot 1 belongs to F (as described in Section III-A).
Although our implementation uses a centralized server that
collects local information from the individual robots through
an emulated wireless communication channel, most of the
algorithmic components described in this section can be done
in a decentralized fashion.

We periodically compute relative H2 homology to identify
redundant robots for redeployment (line 5). We then find
the shortest path to a frontier robot (from the source or
a redundant robot) through the 1-skeleton of the complex
(line 6), along which we execute the “push” action (described
in Section III-B) for deployment of the next robot (line 7). In
presence of multiple sources, deployment can be performed
in parallel along multiple paths as long as the paths do not
intersect (which can be computed using an optimal routing
algorithm).

Algorithm 1 Swarm Coverage Overview
1: Deploy Robot 1; n← 1
2: do
3: Construct Rips cplx. through local communication:

Rrv = COMPUTERIPSCOMPLEX({Ni}i=1,2,··· ,n)
4: Compute fence subcplx. using local bearing info.:

[F ,O] = FENCESUBCOMPLEX(Rrv , {θabc})
5: (Periodically) Identify redundant robots using H2 hom.
6: Find path in 1-skeleton for “Pushing” robots
7: “Push” robots in path
8: Deploy (n+ 1)th robot; n← n+ 1
9: while F 6= ∅

Algorithm 2 Rrv = COMPUTERIPSCOMPLEX({Ni}i=1,2,··· ,n)
Input: Neighbor information, Ni, i = 1, 2, · · · , n.
Output: Rips complex, Rrv .

1: Rrv ← ∅
2: for Robot i = 1, ...n do
3: Rrv ←Rrv ∪ {i}
4: for Robot j ∈ Ni do
5: Rrv ←Rrv ∪ {i, j}
6: for Robot k ∈ Ni do
7: if j 6= k and j ∈ Nk then
8: Rrv ←Rrv ∪ {i, j, k}
9: end if

10: end for
11: end for
12: end for

A. Identifying Frontier and Obstacle Subcomplexes
At a particular robot configuration, X , we identify the 1-

simplices (and the corresponding 0-simplices that constitute)
in the Rips complex, Rrv , which form the frontier to the
unexplored regions, as well as the ones that are adjacent
to the obstacles. They respectively constitute the frontier
subcomplex, F , and the obstacle subcomplex, O. We define
the fence subcomplex as K = F ∪O.

Algorithm 3 [F ,O] = FENCESUBCOMPLEX(Rrv , {θabc})
Input: Rips cplx., Rrv ; Relative bearings, θabc, {a, b, c} ∈ Rrv .
Output: Frontier subcomplex, F ; Obstacle subcomplex, O

1: F ← ∅, O ← ∅
2: E ← COMPUTEEXCEPTION(Rrv )
3: for {i, j} ∈ RrvrE do
4: UnCovij←{+1,−1}r{sign(θijku)|{i, j, ku}∈Rrv}
5: if UnCovij 6=∅ then // A side of {i, j} is uncovered.
6: [θij,new, θ

j
i,new]←DEPLOYMENTANGLE(i, j,UnCovij)

7: if {i, j} is an obstacle simplex then
8: O ← O ∪ {{i}, {j}, {i, j}}
9: else if {i, j} is a fronter simplex then

10: F ← F ∪ {{i}, {j}, {i, j}}
11: end if
12: end if
13: end for

i

j

k1

k2

i

j

k1

k2

Fig. 7. {i, j, k1} and {i, j, k2} are two 2-simplices which have {i, j} in
their boundaries. {i, j} is a fence 1-simplex if both k1 and k2 lie on the
same side of ij (thick purple line in left figure), otherwise not (right figure).

Algorithm 3 describes our method of identifying the
frontier subcomplex and obstacle subcomplex. We begin (line
2) by identifying the 1-simplices in Rrv that are part of
an exception set, E, as described later in Section III-A.1
(Figure 6(a)). For each 1-simplex {i, j} in Rrv that is not
in E, we then compute the sign of θijku for all of the 2-
simpilces {i, j, ku} ∈ Rrv (i.e., the ones which have both
i and j as their vertices). If all the 2-simplices adjacent to
{i, j} lie on the same side of the 1-simplex (Figure 7), then
the bearing angle to all the robots ku relative to j (resp. i)
have the same sign, and thus in line 4, UnCovij is not empty.
Thus, i, j belongs to the fence subcomplex, and we compute
and store the location (in the local coordinates of i and j)
for potentially deploying a new robot to expand the frontier
using a “pushing” action (line 6). The exact computation of
the bearings to the potential new location, θij,new, θ

j
i,new, is

described in subsection III-A.2 and Algorithm 4.
Finally, in lines 7-11, we classify each fence simplex,

{i, j}, as frontier or obstacle using touch sensor readings
and the outputs of DEPLOYMENTANGLE as follows:

i. If i and j are in contact with an obstacle (i.e., a touch
sensor is activated, and there are no robots visible in the
direction of the activated touch sensor) in the expanding
direction, then the 1-simplex {i, j} and 0-simplices i, j
are placed in O (Figure 6(b)).

ii. Otherwise, we check for possibility of {i, j} being
an obstacle simplex at a convex corner as follows:
We compute the “closest” other fence 1-simplex at-
tached to i and j (this is computed as a part of the
DEPLOYMENTANGLE procedure – say it is {i, k}). If
the magnitude of the angle between ik and ij is less
than π

3 − 2β (figure 6(c), where β is the error in
measurement of bearings to neighbors), then the two
robots, j and k, do not see each other due to occlusion
by an obstacle, but every free point (points outside



i j

k

k1 k2

(a) Exception case where a 1-simplex,
{i, j}, has all adjacent 1-simplices
lying on the same side, but is not a
fence simplex. This can be detected
from the perspective of robot k.

i

j
θjo

θio
i

j

(b) Detecting that a 1-simplex, {i, j},
is in O ⊆ Rrv (thick brown line).

ij

k

(c) Convex corner case where a
pair of 1-simplices, {i, j1} and
{i, j2}, are recognized as obstacle
1-simplices (thick brown lines).

j2
ij1

(d) If the robot i is to be “pushed”
along a path in the graph to expand
frontier {i, j1}, it performs a “test
drive” to ensure an obstacle is not
right in front of it.

Fig. 6. Identifying simplices for fence subcomplex K = F ∪O.

obstacles) in their convex hull is in the visibility disk of
at least one robot (aside from possibly small non-convex
sub-features present in that convex corner, which we
ignore). Thus, these 1-simplices are marked as obstacle
1-simplices to be pushed into O.

iii. Otherwise, at least one of the robots can be ex-
panded/moved to the unexplored region, and thus {i, j}
is placed in F along with the corresponding robots
(Figure 7, left).

iv. Additionally, if {i, j} ∈ F due to ‘iii.’, and i belongs
to the path for planned deployment, we perform a “test
drive” in the planned deployment direction for a small
distance to ensure sufficient space availability for new
deployment near obstacles (Figure 6(d)).

The complete illustration of the process of identifying 1-
simplices as part of F or O is given in Figures 7 and 9(a).
We next describe the COMPUTEEXCEPTION and DEPLOY-
MENTANGLE procedures.

1) The Exception Case: The aforesaid approach in de-
tecting fence 1-simplices using UnCovij may give false
positives in some cases when a 1-simplex, {i, j}, is com-
pletely covered by 2 simplices, of which {i, j} do not form
a boundary, as shown in Figure 6(a). Nevertheless, this
special case can be easily detected from the perspective of
a common neighbor, k, of i, j. If it is detected that θkij =
θkik1 + θkk1k2 + · · ·+ θkkrj (for some k1, · · · , kr ∈ Nk), such
that all the summands have the same sign as the summation,
then clearly {i, j} lies inside 2-simplices of which {i, j} do
not form a boundary but k is a vertex. Then {i, j} is marked
as an exception 1-simplex.

2) Identifying Locations for Robot Placement (Hexagonal
Packing): Given a 1-simplex {i, j} ∈ F and the uncovered
direction σ ∈ {+1,−1}, we need to find, in the local
coordinates of i and j, the location for the new robot position.
Figure 8(a) illustrates the uncovered side of 1-simplex {i, j}
in i’s local coordinate. Our strategy for choosing the position
to deploy next robot is to try and achieve a hexagonal
packing [19] (which is the most optimal packing on an
obstacle-free pane) of robots as much as possible, only
to be interrupted by the presence of obstacles or control’s
error. This essentially boils down to sending robots at an
angle of 60◦(= π

3 ) with respect to ij into the free region.
Algorithm 4 describes our DEPLOYMENTANGLE function
which first determines (lines 3-6) the “closest” other fence
1-simplices attached to i and j (e.g., {i, k} in Figure 8(b)).
If there is no other fence 1-simplex attached to i, we set

Algorithm 4 [θij,new, θ
j
i,new] = DEPLOYMENTANGLE (i, j,UnCovij)

Input: Robots i, j; the side of ij that is open/uncovered.
Output: New location for deployment in local coordinates of i, j,

or, {i, j} is marked an obstacle simplex.

1: θij,new ← ∅, θji,new ← ∅
2: for σ in UnCovij do
3: Si ← {l | {i, l} ∈ Rrv and sign(θij,l) = σ}
4: ki ← argmink′∈Si

|θij,k′ |
5: Sj ← {l | {j, l} ∈ Rrv and sign(θji,l) = −σ}
6: kj ← argmink′∈Sj

|θji,k′ |
7: if |θij,ki | <

π
3

(or |θji,kj | <
π
3

) then
8: Mark {i, ki} (or {j, kj}) as an obstacle simplex.
9: else

10: θij,new ← σmin{π
3
, |
θij,ki

2
|}

11: θji,new ← −σmin{π
3
, |
θ
j
i,kj

2
|}

12: end if
13: end for

θinew = θij + σij
π
3 — the 60◦ angle for deployment in

a hexagonal packing. Otherwise we set the angle to the
minimum between the one for hexagonal packaging (π3 ) and
the the one that bisects θijki . Likewise for θjnew.

i

j
u

θju
i Valid bearing 

for new robot

new

(a) The free side of {i, j}
where sign(θij,new) = σ.

i

j

k
θjk
i

θj,new
i

(b) The bearing to the new location,

θij,new=min{π
3
,
θijk
2
}, in i’s local coord.

Fig. 8. Determining bearing to the new location.

If i is not attached to a frontier 1-simplex (e.g., i is
a frontier robot in a narrow passage with a single file of
robots), then we simply choose the direction away from the
neighbors of i as the bearing to the new location (in the local
coordinates of i) for deployment of the new robot.
B. Identifying Path in 1-skeleton for “Pushing” Robots

The strategy in our algorithm for robot deployment in
every control cycle is to keep the structure of the existing
simplicial complex (and hence the positions of the existing
robots in W ) unchanged. New robots are deployed through
the complex simply by “pushing” through paths (i.e., making
each robot on a path move forward to take the place of the
one in front of it) in the 1-skeleton (graph) of the complex
(Figure 9). For computing this path, a centralized knowledge



of the entire 1-skeleton is used (constructed by the robots
communicating each of their local information – the IDs of
the neighbors that each see – to a central server via wireless
communication), although the computation of the path can
indeed be performed in a decentralized manner through peer-
to-peer communication only (see [20] for a decentralized
implementation of the Dijkstra’s algorithm).

We consider the graph made out of the 1 and 0 simplices
in Rrv . The frontier subcomplex, F , computed in previous
section (the 0-simplices in it) provides the list of robots
which we need to potentially move to expand the frontier. We
assign a cost of 1 to all the 1-simplices in the graph, except
the 1-simplies in O, to which we assign cost of wO > 1
in order to avoid paths that pass through robots adjacent
to obstacles, where navigation is more challenging. We use
Dijkstra’s search algorithm to find the shortest path from the
source, which is the robot next to the base station (in case
of multiple source, we can initiate the open list in Dijkstra’s
algorithm with the multiple sources as illustrated in [5]), to
the closest vertex (0-simplex) in F .

Robots are then “pushed” along this path where each robot
on the path simply gets replaced by the one behind it on
the path, while the robot that is on the frontier computes
(as described next) and moves to a new location in the
free/unexplored region. Since robots on the path get replaced
by the robots behind them, this requires that we not only
update the IDs in Rrv , but also the robot IDs in F and O.

8

12

10

11

6

7
3

2

1

9

source

5
4

(a) Shortest path 12→ 10→ 6→ 2
identified from the source to a vertex
in F .

8

12

10

11

6

7
3

2

1

9

source

5
4

13

(b) Robots are “pushed” along the
path. Notice how the new robot 13
appears near the source.

Fig. 9. The complexRrv , and the subcomplexes F (cyan) and O (brown).
Path through the 1-skeleton illustrate “pushing”

C. Control of Robots
We use the visual homing controller described in Sec-

tion II-D (Figure 10(a)). For a frontier robot, i, the desired
bearings θij,des can be computed easily for the planned
direction for deployment of the new robot (θjnew in the current
coordinate frame if robot i), and assuming that the robots are
separated by a distance of rv − ε. For every other robot, i′,
on the path through which robots are being “pushed”, θi

′

j,des
are the current bearing values for the robot ahead of i′ in the
path (with correct ID re-orderings performed).

When robots are being “pushed” along a path, multiple
robots move simultaneously, and for a robot moving on the
path, some of its landmarks (i.e., neighbors) are themselves
moving. The bearing-based controller that we use, is in fact
capable of dealing with moving landmarks, and give similar
convergence properties. A few static landmarks (at least two
in total) referenced by some of the moving robots on the
path are sufficient in attaining convergence. In addition, the

desired bearing is set for each robot for all of their sur-
rounding neighbors. This allows robots to adaptively correct
their trajectory while simultaneously gaining and loosing
landmarks along their trajectory.

No robots reference the robot that is moving to a new
(unexplored) location for expanding the frontier. This is
because there are uncertainties about the unexplored region
(e.g., about presence of obstacles), and errors due to that
should not propagate upstream. Furthermore, if a robot does
not have more than one another robot to reference to as
landmark, it employs an open-loop control to reach the
desired location using odometry estimate, and drives back
in case it loses the single visual link that it had. This is
unavoidable when, for example, the robots move in a narrow
passage in a single file.

1) Action on Touching an Obstacle: Upon touching an
obstacle at a bearing of θio± τ (τ being the resolution in the
measurement of bearing to touch), the robot will not be able
to progress in the direction between (θio− π

2 +τ, θ
i
jo+

π
2 −τ)

(Figure 10(b)). Hence, if the command velocity, vi, computed
using the bearing-only controller “pushes” the robot inside an
obstacle, we take the best projection of that velocity into the
set of allowed velocities (ui in the figure, falling inside the
brown sector) such that using ui as the velocity command
the robot moves out toward the obstacle-free area freeing
itself from the obstacle. Overall, this results in a behavior
akin to sliding along the obstacle using the component of
the velocity parallel to the obstacle.

(a) The bearing-based controller
uses neighbors as landmarks and
use the bearing angles to them to
navigate to the desired location
knowing the desired bearing an-
gles.

vi

θ

ui

(b) Upon touching an obstacle,
the robot use the component of
the computed velocity that is the
projection in the valid/free sector
(brown).

Fig. 10. Components of the controller.
2) Scale Correction: Since our controller is purely

bearing-based, and although we attempt to create a hexagonal
packing, small accumulation of the errors can decrease the
average separation between the robots as we move further
away from the source. To correct this, we perform a scale
correction periodically, where we make a frontier robot,
i, move forward keeping the reference robots behind it
(opposite to a mean bearing to those robots), until it breaks
visual link with at least one of those neighboring robots.
Then we make the robot i drive back until it reestablishes
the visual link with all its neighbors. This ensures that the
average separation between the robots stay in O(rv).
D. Identification and Reallocation of Redundant Robots

Using the method described in [11] and briefly discussed
in Section II-E, we can identify redundant robots in the
complex by computing a generator (non-trivial relative cycle)
of the relative homology H2(Rrv ,K), where K = F ∪ O



is the fence subcomplex. We use the JavaPlex [21] library
for the computation of the non-trivial relative cycle using
persistence algorithm. The required filtration over Rrv is
achieved by inserting the 0, 1 and 2 dimensional simplices
in sequence. We add a disjoint 0-simplex, Q, as illustrated
in Figure 5(b), and construct the 1-simplices {i, Q} and the
2-simplices {i, j, Q}, for every 0-simplex, i, in K, and every
1-simplex, {i, j}, in K. Call this new complex (Rrv ,K).
Computation of persistent homology up to dimension 2 for
this complex with Z2 coefficients using JavaPlex gives us
a set of non-trivial generating 2-cycles in (Rrv ,K) which
generate H2(Rrv ,K). Any non-zero linear combination (in
Z2 coefficients) of these cycles will also be a valid non-
trivial 2-cycle which can be used to identify the robots that
are sufficient for maintaining coverage. Thus we perform
a greedy search for the best linear combination (a linear
combination of cycles such that it contains the least number
of 0-simplices) that also contain all the fence 0-simplices.

Thus, finally we have a set of 0-simplices which constitute
robots that are sufficient to maintain the sensor coverage that
is currently being maintained. All other robots are redundant
and can be removed/reallocated. Once we have identified the
redundant robots, in the next deployment cycle we use them,
instead of deploying new ones from the source.

IV. GUARANTEES

Since throughout the deployment and covering process we
keep the graph (1-skeleton of Rrv ) of the already-covered
region fixed (we only “push” robots along paths in the
graph to the frontiers), we eliminate the possibility that
the algorithm gets stuck in an infinite cycle in which the
graph keeps cycling/switching between two configurations.
Furthermore, by choosing to keep the graph structure fixed
across deployment cycles, we eliminate the possibility that
our control algorithm results in recession of a frontier or
opens up a new hole in the already-covered region of the
environment. If due to accumulation of errors we do open
up a hole, and hence a new set of frontier 1-simplices appear,
we send robots to those frontier 1-simplices to fill the hole.

Algorithm Termination: The algorithm, as described, will
keep deploying robots to frontier 1-simplices as long as they
exist. In absence of obstacles nearby, a robot will be deployed
for every frontier 1-simplex at an angle of 60◦ with the
simplex into the uncovered region. This will always make
the frontier progress (as illustrated in Figure 9). Although
this may result in deployment of redundant robots (which are
later identified and removed using the relative H2 homology
generator computation), the progress in the expansion of the
frontier is always finite in obstacle-free regions. Neverthe-
less, when the expanding location lies inside an obstacle we
need to consider, and thus avoid, the possibility that robots
are deployed indefinitely to a region close to an obstacle
because the unexplored region changing only infinitesimally
at each deployment. This is however prevented by the design
of our algorithm, as described in Section III-A item ‘iv.’,
where we prevent the deployment of unnecessary robots near
obstacles that make little to no progress in expanding the

frontier. Thus, in a finite environment the algorithm will
terminate with no more frontiers left for exploration.

Algorithmic Completeness: As described, when F is not
empty, more robots will be deployed to close the frontier.
When F is empty, then one can observe that for every 2-
simplex {i, j, k} in Rrv , the convex hull of the robots i, j
and k will be covered by the disk of visibility for each of
these robots. If {i, j} is a 1-simplex in O, then due to the
way we introduce elements in O (Section III-A), the region
between the obstacle 1-simplices and the actual obstacles
themselves will always remain covered by some robot’s disk
of visibility (except for non-convex features on the side of the
obstacles that are smaller than rv). Thus, when F is empty,
we can guarantee sensor coverage of the entire environment.

Robustness to Robot Failure: The proposed algorithm can
adapt to failure of robots. If a robot fails (and its neighbors
can detect that), the swarm will ignore the presence of the
failed robot. Thus a “hole” in the complex gets created, and
hence F will have the frontier simplices surrounding that
hole. This will result in new robot(s) being deployed to the
newly open frontier, until F becomes empty once again.

Optimal Coverage: While our deployment algorithm itself
does not guarantee optimality, the process of identifying re-
dundant robots by computing the smallest non-trivial relative
cycle in (Rrv ,K) (described in section III-D), and hence
redistribution of the redundant robots, makes sure that we
do not use more roots than required to cover the entire
environment. While this still is not a guarantee of global
optimality, this indeed is a local optimality in the sense that
after redistribution we end up with a complex that is the
optimum subcomplex of the original complex without any
redundant robot.

Limitations: Since the robots use the omnidirectional
cameras only to obtain bearing to neighbors, and the only
way they sense obstacles is through direct touch/contact, it
is not possible to detect features that are smaller than rv .
Thus, presence of non-convex features on the surface of the
obstacles that are smaller than rv may result in some “blind-
spots” inside the non-convex “grooves”.

V. RESULTS

We demonstrate the performance of the proposed al-
gorithm in simulation using integrated platform between
Robot Operating System (ROS) [22], Stage Simulator [23]
and JavaPlex [21]. We use ROS as a backbone that links
all components together. Stage simulates the dynamics and
sensors of the robots, while JavaPlex is used to compute the
relative homology for identifying the redundant robot.

A. Comparison with Hexagonal Packing
To evaluate the performance of the proposed algorithms,

we compare the number of robots used in covering an
obstacle-free rectangular region using our algorithm and
using the hexagonal packing, which we constructed manually
by overlaying the environment on a hexagonal packing in a
free space. In an obstacle-free environment, the performance
of our algorithms is comparable to the hexagonal packing
solution as illustrated in Figure 11. The majority of the



robots deployed by our algorithm are in the hexagonal
packing arrangement. However, due to accumulated errors
and collision with the boundary, the packing gets distorted
and the clutter of robots is higher near the boundary.

(a) Deployment using the proposed al-
gorithms (robots deployed from the
source on the right).

(b) Hexagonal Packing using
the same average separation
between the robots, rv .

Fig. 11. Our algorithm deployed 98 robots while the hexagonal packing
requires approximately 78 robots.

B. Structured environment

Our algorithm attains a similar performance in a structured
environment with few obstacles as illustrated in Figure 12.
Comparison between figures (c) and (d) illustrates that the
performance of our algorithm is comparable to the hexagonal
packing. We present more results in cluttered environments
in the video accompanying this paper.

(a) T = 14 (b) T = 64

(c) T = 106 (d) Hexagonal Packing
Fig. 12. Demonstration in a structured environment with obstacles. Figures
(a)-(c) illustrate the progress of our sensor coverage algorithm at 14, 64,
and 106 deployment cycles respectively. Figure (d) is the “ideal” hexagonal
packing in the environment for comparison, attained using 82 robots and
using the same average separation between the robots.

VI. DISCUSSIONS

In this paper, we proposed an algorithm for the deploy-
ment of a swarm of resource-constrained, mobile robots
in an unknown environment with the objective of attaining
complete sensor coverage of the environment without using
any metric information. The only sensors are a limited
range omnidirectional camera that can detect bearing to
neighboring robots and a touch sensor for detecting contact
with obstacles and other robots. No global information is
available. The proposed algorithm, which is derived from
concepts in algebraic topology, is complete, terminates in
finite environments, is robust to noise and robot failures, and
is locally optimal. We demonstrate the performance of the
proposed algorithm through a C++ implementation on a ROS
platform

REFERENCES

[1] IA Wagner, M. Lindenbaum, and AM. Bruckstein. Distributed cover-
ing by ant-robots using evaporating traces. Robotics and Automation,
IEEE Transactions on, 15(5):918–933, Oct 1999.

[2] Ercan U. Acar, Howie Choset, Alfred A. Rizzi, Prasad N. Atkar,
and Douglas Hull. Morse decompositions for coverage tasks. The
International Journal of Robotics Research, 21(4):331–344, 2002.

[3] Enric Galceran and Marc Carreras. A survey on coverage path
planning for robotics. Robotics and Autonomous Systems, 61(12):1258
– 1276, 2013.

[4] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for
mobile sensing networks. IEEE Trans. Robot. Autom., 20(2):243–255,
April 2004.

[5] Subhrajit Bhattacharya, Robert Ghrist, and Vijay Kumar. Multi-robot
coverage and exploration on riemannian manifolds with boundary.
International Journal of Robotics Research, 33(1):113–137, January
2014. DOI: 10.1177/0278364913507324.

[6] Samuel Rutishauser, Nikolaus Correll, and Alcherio Martinoli. Col-
laborative coverage using a swarm of networked miniature robots.
Robotics and Autonomous Systems, 57(5):517 – 525, 2009.

[7] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic exploration
as graph construction. Robotics and Automation, IEEE Transactions
on, 7(6):859–865, Dec 1991.

[8] Sven Koenig, Boleslaw Szymanski, and Yaxin Liu. Efficient and
inefficient ant coverage methods. Annals of Mathematics and Artificial
Intelligence, 31(1-4):41–76, 2001.

[9] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Pro-
grammable self-assembly in a thousand-robot swarm. Science,
345(6198):795–799, 2014.

[10] Maxim Batalin and Gaurav S. Sukhatme. The design and analysis of an
efficient local algorithm for coverage and exploration based on sensor
network deployment. IEEE Transactions on Robotics, 23(4):661–675,
Aug 2007.

[11] V. de Silva and R. Ghrist. Coordinate-free coverage in sensor networks
with controlled boundaries via homology. The International Journal
of Robotics Research, 25(12):1205–1222, 2006.

[12] R. Ghrist, D. Lipsky, J. Derenick, and A. Speranzon. Topological
landmark-based navigation and mapping, 2012.

[13] Jason Derenick, Vijay Kumar, and Ali Jadbabaie. Towards simplicial
coverage repair for mobile robot teams. In Robotics and Automation
(ICRA), 2010 IEEE International Conference on, pages 5472–5477.
IEEE, 2010.

[14] A. Muhammad and M. Egerstedt. Control using higher order lapla
cians in network topologies. In Proceedings of the 17th International
Symposium on Mathematical Theory of Networks and Systems, pages
1024–1038, Kyoto, Japan, 2006.

[15] Josep Aulinas, Yvan Petillot, Joaquim Salvi, and Xavier Lladó. The
slam problem: A survey. In Proceedings of the 2008 Conference
on Artificial Intelligence Research and Development: Proceedings of
the 11th International Conference of the Catalan Association for
Artificial Intelligence, pages 363–371, Amsterdam, The Netherlands,
The Netherlands, 2008. IOS Press.

[16] SeoungKyou Lee, Aaron Becker, Sándor P. Fekete, Alexander Kröller,
and James McLurkin. Exploration via structured triangulation by a
multi-robot system with bearing-only low-resolution sensors. CoRR,
abs/1402.0400, 2014.

[17] Allen Hatcher. Algebraic Topology. Cambridge Univ. Press, 2001.
[18] R. Tron and K. Daniilidis. Technical report on Optimization-Based

Bearing-Only Visual Homing with Applications to a 2-D Unicycle
Model. ArXiv e-prints, February 2014.

[19] H.-C. Chang and L.-C. Wang. A Simple Proof of Thue’s Theorem on
Circle Packing. ArXiv e-prints, September 2010.

[20] M. Sghaier, H. Zgaya, S. Hammadi, and C. Tahon. A distributed
dijkstra’s algorithm for the implementation of a real time carpooling
service with an optimized aspect on siblings. In Intelligent Trans-
portation Systems (ITSC), 2010 13th International IEEE Conference
on, pages 795–800, Sept 2010.

[21] Andrew Tausz, Mikael Vejdemo-Johansson, and Henry Adams.
Javaplex: A research software package for persistent (co)homology.
Software, 2011.

[22] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng. ROS: an open-source robot
operating system. In Proc. of the IEEE Intl. Conf. on Robot. and
Autom., Kobe, Japan, May 2009.

[23] The stage robot simulator. http://rtv.github.io/Stage/.

http://rtv.github.io/Stage/

	INTRODUCTION
	Motivation and Related Work
	Problem Description

	Preliminaries
	Notations
	Vietoris–Rips Complex of Camera Sensing Footprints
	Contact/Touch Sensing Model
	Local Bearing-Based Controller
	Relative H2 Homology

	Algorithm Design
	Identifying Frontier and Obstacle Subcomplexes
	The Exception Case
	Identifying Locations for Robot Placement (Hexagonal Packing)

	Identifying Path in 1-skeleton for ``Pushing'' Robots
	Control of Robots
	Action on Touching an Obstacle
	Scale Correction

	Identification and Reallocation of Redundant Robots

	Guarantees
	Results
	Comparison with Hexagonal Packing
	Structured environment

	Discussions
	References

