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1. Introduction: 
 
The problem of fluid-structure interaction is encountered in various Engineering 
applications. The present problem deals with vibrations induced into structures due to 
flow taking place on its surface, and hence analyzing the stability of the flow. Though the 
present approach to the problem is grossly simplified and no substantial simulation or 
numerical solution have yet been deduced, the works done till now have great potential in 
applications like flow over underwater vehicle, etc. 
 
 
2. Problem definition and aim: 
 
Our present aim is to analyze the stability of fluid flows over a flexible flat surface. By 
the term ‘stability’ we mean that we try to determine the critical Reynolds number for a 
given flow profile over the structure. We will consider flexibility of the plate and frame 
the corresponding equations. However for the purpose of determining the numerical 
solution we have presently investigated only the case of flow over a rigid surface to 
check if we obtain the standard results for stability of parallel flow over rigid surfaces 
available in standard text. 
 
 
3. Origin of Turbulence and ways to analyze stability of a flow: 
 
Flow induced vibration is caused in structures by forcing due to time variant pressure 
acting on the surface of the structure. If the flow is imagined to be a linear superposition 
of a steady state laminar flow and a perturbation flow field, the laminar flow won’t cause 
the forcing on the structure as it acts as a time invariant pressure on the structure’s 
surface. It is the perturbation flow field that varies with time and hence produces forcing 
on the structure’s surface. 
This same perturbation flow field is the sole cause of Turbulence in the flow. The origin 
of the perturbation flow field may be something like a very small disturbance caused in 
the laminar flow field. A flow is said to be stable if for any small initial disturbance (i.e. 
perturbation) added to the laminar flow field, the perturbation flow field gradually dies 
down with time. It will be termed as a Turbulent flow if the perturbation flow field gets 
magnified with time. Hence our primary approach will be to investigate the nature of 
variation of a perturbation flow field with time. 



4. The Orr-Somerfeld equation: 
 
The two-dimensional incompressible flow over the plate is governed by the 
Navier Stoke’s equations, 
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and the continuity equation, 
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Let us consider a steady-state laminar flow over an infinitely long plate. 
 

For this flow, 
 u = U(y) 
 v = 0 (3) 
 p = P(x) 
 
 

 
Now let the perturbation field be described by the perturbation components denoted by a 
‘prime’ upon the steady-state laminar variables. 
Hence the final flow field will be described by, 
 

 u = U(y) + u’(x, y, t) 
 v = v’(x, y, t) (4) 
 p = P(x) + p’(x, y, t) 
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Now, both the steady-state laminar field (3) and the superposed field (4) satisfies 
equation (1) and (2). Hence by substituting them in (1) and (2) and performing some 
simplification, we obtain the equations governing the perturbation flow field, 
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From these equations, with a known velocity profile U(y), we may obtain solutions for u', 
v', and p'. Our present aim will be to determine for a given velocity profile U(y), the 
coefficient of viscosity ν and the boundary & initial conditions of the perturbation fields, 
whether or not the perturbation components die down with time. 



In order to satisfy eqn. (5c), we define a stream function ( , , )x y tψ  such that 

 'u
y
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It is now assumed that the disturbances, and hence ψ  is superposition of several periodic 
disturbances (periodic in x) propagating along the direction of flow. 
Hence, we substitute, 
 (( , , ) ( ) i x tx y t y e )α βψ φ −=  (7) 
 

ψ  is said to be periodic on x with frequency α  and wavelength 2
X

πλ
α

= . 

Though α  can be assumed to be real, β  being the time frequency should be assumed to 
be complex in order to keep the possibility of non-periodic magnification or decay of ψ  
with time. 
The final ψ  will be superposition of all the solutions of ψ . 
We define the complex velocity of propagation of the disturbance as 

 rc c ii cβ
α

= = +  (8) 
[ (( ) i rc t i x c ty eαψ φ + − )]∴ =  

It may be noted that for , the solution of 0ic < ψ  dies down with time, and hence so does 
the perturbation components. Thus the flow is stable for 0ic <  and tends to become 
turbulent for . 0ic >
 
We put u' and v' in terms of φ , α  and β  in (5a) and (5b) and eliminate p' to obtain a 

single equation. We non-dimensionalize the equations by redefining y as y
δ

, U as 
m

U
U

, c 

as 
m

c
U

, where Um is the free-stream velocity of the flow and δ  is the boundary layer 

thickness. The non-dimensionalized equation hence obtained is called the Orr-
Sommerfeld equation: 
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ν

=  is the Reynolds Number. 

 
A trivial solution to eqn.(9) is 0φ = . For non-trivial solution, for a given α  and R, we 
obtain an eigenvalue of c and the corresponding eigenfunction φ . 
Hence our immediate target is to find an eigenvalue solution of (9). 



5. Boundary conditions for the Orr-Sommerfeld equation: 
 
A. Boundary conditions for flow over a rigid, static plate: 
 
For this case, 

At y = 0, 
v' = 0 and u' = 0 

⇒  (0) 0φ =  and (0) 0φ′ =  
At y→∞, 

v' = 0 and u' = 0 
⇒  ( ) 0φ ∞ =  and ( ) 0φ′ ∞ =  

 
 
B. Boundary conditions for flow over a flexible plate modeled as a beam: 
 

p'(x,0,t) We model the plate as infinite flexible beam. Hence, 
the differential equation governing the motion of the 
beam is given by, 
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Where, w denotes the displacement of the beam in Y direction, λ  is mass per unit length 
of the beam. The forcing on the beam is due to the time-variant perturbation pressure. 
It is to be noted in this case that equations (5), (9) and (10) gets coupled. 
One way of solving the equation will be as follows. 
As p' is of the form of (i x te )α β− , we may write for eqn. (10), 
 (( , ) i x tw x t k e )α β−=  (11) 
 
Substituting this w in (10) and hence substituting the hence obtained p'(x,0,t) into (5a), 
and Substituting v' in terms of φ  in the same (5a) equation, all at y = 0, we obtain, 
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Hence the boundary conditions become, 

At y = 0, 

v' = w  and u' = 0 
i

⇒  (0) kβφ
α

= −  and (0) 0φ′ = , where k  is the non-dimensionalized k. 

At y→∞, 
v' = 0 and u' = 0 

⇒  ( ) 0φ ∞ =  and ( ) 0φ′ ∞ =  
 
Hence, as it can be seen, one of the boundary conditions is a bit more complex involving 
φ , φ′ , φ ′′  and c. 



The numerical technique for solving the Orr-Sommerfeld equation for the eigenvalues 
and eigenfunctions in either of the cases will remain similar, except that the boundary 
conditions are modified. However till date we have only investigated the case ‘A’, i.e. the 
case of flow over a rigid, static plate. 
 
 
 
6. Numerical methods attempted for solving the Orr-Sommerfeld equation: 
 
A. Galerkin’s Method: 
 
This method, though can handle the case of flow over a rigid, static plate satisfactorily, its 
application in solving the case of flexible plate is difficult. 
The method for the case of flow over a rigid, static plate is described below in brief. 
 
We denote eqn.(9) by ( ) 0φΓ = , where Γ denotes the operator. 
We write φ  as a linear superposition of several functions iφ  that satisfy the boundary 
conditions given in 5.A. Such functions were chosen to be of the form, y

i y eη µφ −= . 
Hence we write, 
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We now define an error, 
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We need to choose the values of iξ  in such a way that this error is minimized. We do that 
by solving the set of n equations, 
 , ie φ 0= , i = 1 to n (14) 

where, ,i jχ χ  denotes the inner product given by, 

0

, i ie eφ φ
∞

= ∫ dy  

 
The n equations in (14) have iξ  as the unknowns and can be represented in the matrix 
form as, 

 [ ]
1
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n

M
ξ

ξ
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Where the matrix [M] contains the unknown c. 
For non-trivial solution of this equation, we must have, 
 [ ] 0M =  (16) 



In general we’ll obtain n solutions for c. We should chose the one for which the iξ s are 

such that  is minimum. 
1

( )
n

i i
i

yξ φ
=

⎛
Γ⎜
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This method was implemented in Mathematia 5.1 and a rather unsatisfactory result was 
obtained probably due to the following reasons: 

i. Due to limitation of computational power, n had to be limited to 4 in order to get a 
satisfactory and accurate integration value of the inner product and solution of c 
from (16). 

ii. The choice of η  and µ  in choosing the functional forms were done arbitrarily. 
 
We determined the eigenvalues c for different α and R and plotted the contour in the α-R 
plane for which ci = 0. This contour will mark the margin between the stable and unstable 
zones of α and R. However the contour ci = 0 could not be found satisfactorily in the fist 
quadrant of α-R plane. But on plotting a contour plot of ci , the following was obtained. 
The plot demonstrates that the basic shape of the standard results is being approached by 
the solution: 
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The horizontal axis denotes R and the vertical axis denotes α. 
 



B. ‘Automated search of eigenvalues’ –  Integration by Runge-Kutta: 
 
This method primarily proposed by Betchov & Criminale [2], deals the regions above and 
below the boundary layer separately. We first investigate the Orr-Sommerfeld equation 
(9) for y > 1. In this region, the non-dimensionalised velocity is U = 1. Hence the 
equation is modified as, 

 ( )2 2(1 )( ) 2ic 4

R
φ α φ φ α φ α φ

α
′′ ′′′′ ′′− − = − − +  for y > 1 (17) 

 
This equation being 4th order linear in φ  with constant coefficient has simple analytical 
solution given by, 
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Hence,  1p α= ,   1p α= −  
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From boundary condition at ∞, as y→∞, 0φ =  and 0φ′ = . 
Hence we have, A1 = A3 = 0 for y > 1. 

2 4
2 4( ) p y p yy A e A eφ∴ = + . 

 
Now we argue that, since for y > 1, the solution is a linear superposition of two modes 

2p ye  and 4p ye , the solution for y < 1 will also be linear superposition of these two same 
modes. Hence now our task is to find the solution of these two modes in the region y < 1. 
We attain this by performing two integration passes from y = 1 to y = 0 independently. 
We used Runge-Kutta method for this numerical integration. 
 
Integration Pass – I: 
We start from y = 1 with A2 = 0 and A4 = 1(or some other value). 
Therefore we take the initial values , ,  & 

 and move on integrating towards y = 0. 

4(1) peφ = 4
4(1) pp eφ ′ = 42

4(1) pp eφ′′ =
43

4(1) pp eφ′′′ =
Let the solution obtained in this process be called ( )I yφ . 
 
Integration Pass – II: 
Similarly with A2 = 1(or some other value) and A4 = 0 we obtain the second pass 
integration ( )II yφ . 
 
Hence the final solution is of the form ( ) ( ) ( )I I II IIy a y a yφ φ φ= + . 



From the boundary conditions at y = 0, 
(0) (0) (0) 0I I II IIa aφ φ φ= + =   and  (0) (0) (0) 0I I II IIa aφ φ φ′ ′′ = + = , 

for non-trivial solution of aI and aII, we must have, 
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φ φ
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It is to be noted that the only unknown in (20) for a given α and R is c. Hence from 20 we 
obtain the eigenvalue c. The corresponding eigenvector gives aI and aII , and hence the 
final solution of ( )yφ . 
 
Search for Eigenvalue in c-plane: 
 
However it was not possible to solve c explicitly from (20). Hence we assumed some c 
and determined the solutions from the two integration passes, ( )I yφ  and ( )II yφ . 
For those particular solutions we defined, 
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φ φ

φ φ
=
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As we know f(c) should converge to 0, we used an iteration scheme [2] as follows. 
We start with an arbitrary value of c and some small value of cδ  and go on updating it 
using the following iteration, 
  

 
1

( ) 1
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f c cc c
f c

δλ δ
−

⎛ ⎞+
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 c c c← +∆  
 c cδ µ← ∆  
where, λ  = 1, 0.8 or 0.5 depending on whether the convergence is fast, moderate or slow. 

and,  1
4

µ = . 

The iteration continues till  reaches a substantially small value. c∆
 



Like before, we once again searched for the contour of ci = 0 in the α-R plane. 
The results obtained, though not satisfactory, is described in the following plot of 20 
points: 
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The primary reason for the deviation of points from a single smooth contour is the high 
oscillation of the solution ( )II yφ  as the second numerical integration approaches y = 0. 
This fact is well demonstrated in the following plot of the amplitude of ( )II yφ  vs. y for a 
particular α and R: 
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The small amplitude of ( )II yφ  is due to the initial choice of a small A2 for the second 
Integration pass. 
 
 
C. Modified second Integration Pass using Stations in between: 
 
This method, as explained by Betchov & Criminale [2], was implemented in order to 
reduce the oscillation of the second solution. The main principle of this method is based 
on the choice of some stations in between y = 1 and y = 0. At these stations the second 
integration is paused and it is updated by linearly combining with the first integration 

( )I yφ  to make A4 = 0. 
We are presently working on this technique and hope to obtain some satisfactory result 
very soon. Once we obtain a solution for the case of flow over a rigid, static plate, we’ll 
attempt the solution for the case of flow over a flexible plate (modeled as an infinite 
beam) on the similar line. 
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