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1 Introduction and literature review 
 

1.1 Introduction to the problem 
 
Missiles and rockets used in defense as well as in aerospace research and applications 
are generally structures which assume very high speed (typically above 3 Mach). But 
they are also generally very slender structure with a high L/d ratio in order to increase 
the aerodynamic efficiency. Hence it is very important to take into account the 
structural flexibility while studying the dynamics of the missile or designing a control 
system for it. 
 
Real time trajectory control and stabilization of guided missiles is a challenging 
problem both in respect to study of dynamics of the system and designing of suitable 
control loops. There had been several works previously on missiles considering them 
as rigid structures [1, 2]. Study of the rigid body dynamics and design of control 
system has been done and implemented successfully. Such control loops involve 
velocity, position and orientation feedbacks along with actuation by thrust vectoring. 
However at high speeds and high L/d ratios it becomes indispensable to consider the 
structural stability of the system and to ensure that the system stabilizes quickly in 
case of slight deviations from the expected trajectory/orientation/velocity. Such works 
have been investigated previously [1, 3, 5]. 
The control system for the whole missile may be viewed to be consisting of two 
loops, an external one for trajectory control and long period dynamics, and an internal 
one for stabilizing the perturbation components over a short period. It can be pointed 
out over here that in the outer loop we need not take into consideration the structural 
flexibility since the structural deformation is not a parameter that needs to be 
controlled for trajectory control. However in case of the internal loop, attention should 
be given so that the structural instabilities, if any, should die down quickly. 
 
Another important cause of instabilities due to perturbations is the formation of 
turbulence in the flow past the missile. In order to ensure that the flow along the sides 
of the missile never reach the turbulent zone, we need to design the maximum length 
and the maximum velocity of the missile accordingly. In fact it can be shown that the 
stability of the flow depends on the Reynolds Number. However since the surface 
over which the flow is taking place is flexible, this becomes a problem of fluid-
structure interaction. 
The problem of fluid-structure interaction is encountered in various Engineering 
applications. In the present problem we have studies the vibrations induced into 
structures due to flow taking place on its surface, and hence analyzing the stability of 
the flow. Though the present approach to this part of the problem has been grossly 
simplified and no substantial simulation or numerical solutions could be made, the 
work have great potential in applications like flow over underwater vehicle, flow over 
aerospace structures, design of coating materials on the surface of bodies moving 
through fluids in order to reduce the turbulence, etc. 
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1.2 Literature Review 
 
As said earlier, several works have been done on modeling and control of missiles, 
both with and without considering the structural flexibility. 
Pourtakdoust and Assadian [3] have modeled the missile as Bernoulli–Euler beam and 
have derived the effect of axial and transverse components of engine thrust on the 
beam. Guran and Ossia [5] have done works on similar line with Galerkin method and 
Finite difference solution approaches. 
T.P.Chang [4] in his work has also modeled space structures as free-free beam and 
has studies it under random excitation forces. 
Greensite [1] in his book has given a detailed discussion on short period dynamics of 
flexible missiles. The present work is primarily based on the theories given in this 
book. The short period dynamics of a system is studied in order to ensure that the 
system stabilizes under some small perturbations in the external forces or state 
variables. C.T.Leondes [12] gives a detailed discussion on contril and guidance of 
aerospace vehicles. 
The problem of studying stability of flows over rigid and flexible surfaces has been 
extensively reviewed by Betchov and Criminale [7]. Benjamin [8] has done works on 
similar line. The Automated Search for Eigenvalues used for eigenvalue solution of 
Orr-Sommerfeld equation was successfully used by Betchov and Szewczyk [10]. The 
solution using two integration passes was used by Nachtsheim [11]. 
 
 
1.3 Overview of the present work 
 
The present work primarily deals with the short period dynamics of a missile, taking 
into account the structural flexibility. By short period dynamics we mean that over the 
period the desired motion (or the steady state motion) remains independent of time, 
while only the perturbation components are studied. 
To approach the problem, perturbation components of the system variables have been 
taken and the dynamics of the system has been linearized. A control loop is to be 
designed in such a way that the perturbation components die down with time. 
This part of the work mainly consists of the following parts: 
 

I. Study and modeling of the system dynamics. These include 
a) The overall balancing of forces/moments on the system, 
b) Inclusion of forcing on the system due to thrust, engine inertia, 

aerodynamic forces, sloshing of fuel, gravity, etc. 
c) Considering structural flexibility and how it’s being affected by the 

foresaid forces. 
 

II. Linearizing the equations obtained in the above step by elimination of the 
steady state components of state variables, forces and moments. By steady 
state we mean the condition in which the missile is having a constant linear 
and angular velocity with no structural deformation/vibration. The forces and 
moments acting in the system under such a situation are the steady-state 
components of the forces and moments. 

 

III. Implementing the linearized equations using Matlab 6.5 so as to create a 
virtual model of the system’s short period dynamics. The implementation is 
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done using state-variables and matrix formulation so that it becomes easy to 
study the system. A few salient features of the implemented code are: 

• Flexible and easily customizable code with separate functions for 
overall rigid-body equations, flexibility, forcing due to thrust, engine 
inertia, aerodynamic forces, etc. Hence it is possible to switch on or off 
one or more factors in the code very easily. 

• State-space representation of the system equations enabled easy and 
fast update of the state vector and perform checks on stability of the 
system. 

• The equations and expressions in the code are expressed as vectors 
with the elements being the coefficients of the state variables and their 
derivatives. This technique of implementation enabled keeping the 
state variables and their derivatives separate from each other in every 
equation or expression. Hence it helped in easy creation of the matrices 
in the state-space representation. 

 
The concepts and related equations for part I and II have been extensively adopted 
from the text by Greensite [1]. However a few modifications along with change in 
some sign conventions have been done. 
 
The next part consists of studying the stability of flow past the missile. The present 
work deals with analysis of the stability of 2wo-dimensional fluid flows over a 
flexible flat surface. By the term ‘stability’ we mean that we try to determine the 
critical Reynolds number for a given flow profile over the structure. 
We will consider flexibility of the beam (since the missile has been modeled as a 
beam) and frame the corresponding equations. Our main aim has been numerical 
eigenvalue solution of the Orr- Sommerfeld equation with appropriate boundary 
conditions. For the purpose of numerical solution we have presently investigated only 
the case of flow over a rigid surface to check if we obtain the standard results for 
stability of parallel flow over rigid surfaces available in standard text. 
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2 Mathematical model of the flexible missile and design 
of Control Loop 

 
2.1 The dynamic model 
 
The model of the missile has been simplified by considering it as a flexible beam with 
the engine and fuel (modeled as harmonic pendulums) attached to it. Hence the basic 
model includes a free-free flexible beam with forcing on it due to thrust, engine 
inertia, aerodynamics, sloshing of fuel, gravity, etc. 
The following free body diagram gives an overall representation of the system. 

FT 

FE 

FS
FG 

FA

fig - 1 

 
 
2.2 Coordinate system and notations 
 
A local right-handed coordinate system (Xb, Yb, Zb) is fixed to the missile with its 
origin chosen at any point on its body. It’s called the body frame, Sb. The X-axis is 
chosen along the direction of the instantaneous velocity’s mean component (i.e. 
removing the perturbation components). The Z-axis is chosen perpendicular to the X-
axis on the plane of instantaneous radius of curvature. 

Xb

Yb 
Zb 

Sb 
U0 

μ 

Xb 

Zb 

fig - 2 

 
 
Notations: 
 
L0 = Net length of the missile body; 
LC = Distance of the origin of Sb from hind end of the missile; 
LR = Dist between c.g. of engine and the hinge to which the engine is attached with the missile body; 
LA = Distance between origin of Sb and nose tip of vehicle = L0 – LC ; 
mR = Mass of engine; mM = Mass of missile without engine; m0 = mM + mR = Total mass.
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2.3 Overview of equations governing the motion of the missile 
 
The equations are to be developed in 3 steps: 

i. Overall equation of motion for net linear and angular velocities considering 
the net forces and moments on the beam. 

ii. Considering flexibility of the beam and the forcing on it, determination of the 
shape of the beam. 

iii. Determination of the forces due to the various factors like thrust, engine 
inertia, aerodynamics, sloshing of fuel, gravity, etc. 

 
In the next section equations for each of these will be gradually developed with 
mention of appropriate assumptions and then the equations will be linearized using 
perturbations in each variable. 
 
2.4 Overall equation for rigid body dynamics 
 
2.4.1 Force Equations 
 
The net acceleration of the missile body (excluding engine & fuel) in Sb is given by, 

( )c c
d
dt t t

∂ ∂
= = + + ×

∂ ∂
μ μ ωa ω×μ + ω× ω×ρ ρ  (1) 

Where, 
ρc  is position of the centre of mass of the missile body in Sb, 
μ is the velocity of origin of Sb, 
ω is the angular velocity of the frame Sb relative to the global inertial frame, 
and the partial derivatives are taken assuming that Sb is not rotating, i.e. the unit 

vectors are constant. 
 
Now from Newton’s Second Law of motion, 

F = mM a 
where, F is the net external force on the missile body. 
 
Now putting, 

b b b

b b b

c cg b cg b cg

U V W
P Q R
x y z

= + +
= + +

= + +

μ i j k
ω i j k
ρ i

(2) 

bj k
 

we get, 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2

2 2

2 2

M M cg M cg M cg b

M M cg M cg M cg b

M M cg M cg M cg b

m U QW RV m x R Q m y R PQ m z Q PR

m V RU PW m x R PQ m y R P m z P QR

m W PV QU m x Q PR m y P QR m z Q P

⎡ ⎤= + − − + − − + +⎣ ⎦
⎡ ⎤+ + − + + − + − +⎣ ⎦
⎡ ⎤+ + − − − + + − +⎣ ⎦

F i

j

k

�� �

� � �

�� �

 

(3) 
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2.4.2 Moment equations 
 
The net external moment due to the forces and couples in the body frame Sb can be 
expressed as, 

b
b M c

d dm
dt dt

= + ×
H μG ρ  (4) 

where, 
Hb is the net angular momentum of the missile in the body coordinate frame, given 
by, 

b X b Y b ZH H H b= + +H i j k  
where, 

X XX XY XZ

Y XY YY YZ

Z XZ YZ ZZ

H I P I Q I R
H I P I Q I
H I P I Q I

R
R

= − −
= − + −
= − − +

 (5) 

where IXX, IXY, IZX, IYY, IYZ, IZZ are the second moments of inertia of the missile body in 
Sb. 
And, 

b b
b

d
dt t

∂
= + ×

∂
H H ω H  (6) 

 
Using (4), (5) and (6) we obtain, 

2 2

2 2

[ ( ) ( ) ( ) ( )

( ) ( )]

[ ( ) ( ) ( ) ( )

( ) ( )]

[ ( ) (

b XX XY XZ YZ ZZ YY

M cg M cg b

XY YY YZ XZ XX ZZ

M cg M cg b

XZ YZ

I P I Q PR I R PQ I R Q I I QR

m y W PV QU m z V RU PW

I P QR I Q I R PQ I P R I I PR

m x W PV QU m z U QW RV

I P QR I Q PR

= − − − + + − + −

+ + − − + −

+ − + + − − + − + −

− + − + + −

+ − − − +

G

i

j

�� �
� �

�� �
� �

�� 2 2) ( ) (

( ) ( )]
ZZ XY YY XX

M cg M cg b

(7) 

)I R I Q P I I PQ

m x V RU PW m y U QW RV

+ + − + −

+ + − − + − k

�
� �

 

 
Now we linearize the equations (3) and (7) by expressing U, V, W, P, Q and R as 
summation of steady-state and perturbation components: 

0 0

0 0

0 0

U U u P P p
V V v Q Q q
W W w R R r

= + = +
= + = +
= + = +

 (8) 

where, u, v, w, p, q and r are the perturbation components and are small compared to 
the steady state components. Moreover, because of the choice of our body frame Sb, 
we may assume that the primary steady-state component of velocity is only along ib. 
And we also assume that in steady state, for studying the short period dynamics, the 
desired trajectory is a straight line. Hence the steady state components of angular 
velocity are all zero. 
Hence we have, 

V0 = 0, W0 = 0 (9) 
P0 = 0, Q0 = 0, R0 = 0. 
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Making these substitutions, eliminating the steady-state components and simplifying 
the results, we obtain the following sets of equation: 

0

0

0 0

0

0

( )

( )

( )

( ) (

( )

( )

X M cg cg

Y M cg cg

Z M cg cg

X XX XY XZ M cg M cg

Y XY YY YZ M cg M cg

Z XZ YZ ZZ M cg M

F m u y r z q

F m v U r x r z p

F m w U q x q y p

)M I p I q I r m y w U q m z v U r

M I p I q I r m x w U q m z u

M I p I q I r m x v U r m

= − +

= + + −

= − − +

= − − + − − +

= − + − − − +

= − − + + + −

� � �
� � �
� � �
� � � � �
� � � � �
� � � � cgy u�

 (10) 

 
Where FX, FY, FZ, MX, MY and MZ are perturbation components of the forces and 
moments. It can be mentioned here that the 6 equations in (10) gives the dynamics of 
the perturbation components of linear and angular velocities. 
 
 
2.5 Equations for elastic vibration of the missile body 
 
Though the deflection of the missile body is possible in both the pitch (i.e. XbZb) and 
yaw (i.e. XbYb) planes, we have presently restricted our analysis to pitch plane only 
assuming that the major aerodynamic forces, the thrust force and other forces have 
negligible components along Yb-direction. 
The missile is considered to be a free-free beam under external loadings and 
moments. It’s assumed that the beam obeys the Euler Lagrangian beam equation: 

 
The equation governing the deflection of the 
beam, ξ(x, t), is given by,  p(x,t) 

c(x,t) x 

ξ 

b.c. for free-free beam: 
 
ξ''(0,t)=0    ξ''(L0,t)=0 
ξ'''(0,t)=0    ξ'''(L0,t)=0 
 

fig - 3 

            
4

4

( , )( , ) c x tA EI p x t
x x
ξρ ξ ∂ ∂

+ = +
∂ ∂

��  

where, p and c are distributed load and couple per 
unit length on the beam. It can me mentioned here 
that since there is no deflection in steady state, p 
and c are due to only the perturbation components 
of forces and moments. 
ρ, A, E and I are the mass density, cross-sectional 
area, Young’s modulus and second moment of 
area of the cross section about the neutral axis 
respectively. 

 
2.5.1 Determining the natural frequencies and mode shapes 
 
Now we seek eigen-value solution for the beam equation. For this we remove the 
forcing terms and assume ξ(x, t) is of the form, ( ) i tx e ωφ . The resulting non-trivial 
solutions that satisfy the boundary conditions will give the eigen-values ω and the 
corresponding eigenfunctions (i.e. mode shapes) φ . 
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The equation to be solved for obtaining φ  is, 
4

4
4 0

x
φ β φ∂
− =

∂
, (11) 

where, 
1

2 4A
EI

ω ρβ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. 

 
Hence, the solution is of the form, 

( ) cosh sinh cos sinx A x B x C x D xφ β β β= + + + β  
 
Substituting this φ  in the four boundary conditions, i.e., 

0 0(0) 0, (0) 0, ( ) 0, ( ) 0L Lφ φ φ φ′′ ′′′ ′′ ′′′= = = =  
we obtain, 

0 0 0 0

0 0 0 0

1 0 1 0
0 1 0 1

0
cosh sinh cos sin
sinh cosh sin cos

A
B

L L L L C
L L L L D

β β β β
β β β β

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ =
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

 

(13) 

(12) 

(14) 

 
Eliminating A, B, C and D, we obtain the characteristic equation, 

0 0cos cos 1 0L Lβ β⋅ − =  (15) 
 
This equation is solved for β  numerically. 

π 2 π 3 π 4 π 5π 6π
βL0

-10

-7.5

-5

-2.5

2.5

5

7.5

10
cosHβL0Lcosh HβL0L−1

 

L0β0 L0β2 L0β1 L0β5 L0β3 L0β4 

fig - 4 

The above plot shows the solution points. 
It can be noted that L0 βn ≈ (n + 1/2)π for n ≥ 3. We used this approximation for 
calculating βn for n ≥ 4. 
 
Once βn is know, we obtain ωn from (13). 
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From (14), An=Cn, Bn=Dn. 
Putting , we obtain ( )0 0sinh( ) sin( )n nA Lβ β= − − nL 0 0cosh( ) cos( )n n nB L Lβ β= − . 
 
Hence, from (13), the nth mode shape is obtained as, 

( )( )
( )(

0 0

0 0

( ) sinh( ) sin( ) cosh( ) cos( )

cosh( ) cos( ) sinh( ) sin( )
n n n n

n n n )
n

n

x L L x

L L x

φ β β β

β β β β

= − − +

+ − +

x

x

β
 (16) 

(17) 

(18) 

 
2.5.2 Discretization of governing equation of dynamics of the beam 
 
Now the shape of the beam can be expressed as a linear superposition of all the mode 
shapes. i.e., 

1
( , ) ( ) ( )n n

n
x t q tξ φ

∞

=

=∑ x  

 
Substituting (17) in (11) and using (12) we have, 

( )2

1

( , )( ) ( ) ( , )n n n n
n

c x tx q q x p x t
x

μ ω φ
∞

=

∂
+ = +

∂∑ ��  

Where, ( )xμ  is the mass per unit length of the missile = Aρ . 
 
We multiply (18) by ( )i xφ  on either sides and integrate from x = 0 to L0. We note that 
the mode shapes are orthogonal to each other, which makes all the other terms except 
the one with ( )i xφ  vanish. Hence we have, 

2 i
i i i

i

Qq q
M

ω+ =��  (19) 

where, 
0

0

( , )( ) ( , ) ( )
L

i
c x tQ t p x t x dx

x
φ∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫ i  is the generalized force, 

and [ ]
0

2

0

( ) ( ) ( )
L

i iM t x xμ φ= ∫ dx  is the generalized mass. 

 
Assuming the presence of viscous damping in the system, (19) is modified as, 

22 i
i i i i i i

i

Qq q q
M

ζ ω ω+ + =�� �   (20) 

 
Equation (20) is to be solved for qi, i = 1 to ∞. However for simulation purpose, only 
first 10 modes were taken, i.e. i = 1 to 10. 
 
It can be again noted here that all the calculations that have been performed are 
restricted to the pitch plane, i.e. the ZbXb plane. However in similar fashion the model 
may be extended to the yaw plane without much problem. 
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2.6 Perturbation components of forces and moments on the flexible 
missile body 

 
Now that the basic equations governing the perturbation motion of the flexible missile 
body have been developed [i.e. eqn (10) and (20)], we need to determine the 
distributed forces and couples, p & c and the perturbation forces and moments. The 
primary contributing factors to these terms are thrust, engine inertia, aerodynamics, 
sloshing of fuel and gravity. In the following section the contribution due to each of 
these are discussed in brief. The detailed derivations are given in Greensite [1]. Since 
at present we have restricted our model to only the pitch plane, we are required to find 
the components of forces only in the Xb and Zb directions, and moments along Yb. 
 
2.6.1 Forces and moments due to Thrust from the engine (FT & MT) 
 

It may be noted in the adjacent diagram 
that there are two components of the 
thrust, namely TS and TC. Both of them 
are provided by the engine. TS acts along 
the tangent at the hind end of the 
missile, while TC acts along an angle 
δp0+ δp from the tangent direction. The 
angle δp is the perturbation component 
of the engine swivel angle. 

Xb 

Zb 

x

ξ(0,t) 
TS

TC

δp0 + δp 

fig - 5 

 
By direct resolution of forces and moments, and elimination of steady state 
components, the perturbation components of forces acting at the hind end of the 
missile due to thrust are, 

(21a) , 0T XF =  

, ( ) ( ) (T z C p C S i i
i

F T T T q tδ φ 0)′= − + ∑  (21b) 
And perturbation component of moment in XbZb plane, 

( ) ( ) (0) ( ) ( ) (T C C p C S i i C S i i
i i

M L T T T q t T T q tδ φ⎡ ⎤′= − + − +⎢ ⎥
⎣ ⎦

∑ ∑ 0)φ   (22) 

 
It can be noted that the force is acting at a concentrated point at the hind end of the 
missile body. In order to incorporate this into the generalized force of eqn (20), we 
define the contribution of this force in the distributed force per unit length p(x,t) as, 

( , ) ( )T Tp x t F xδ=  
  (23) and the distributed couple,  ( , ) 0Tc x t =  

where, ( )xδ  represents the Dirac-delta function. 
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2.6.2 Forces and moments due to Inertia of the engine (FE & ME) and the 
swiveling moment 

 
The expression for perturbation component of force acting at the hind end of the 
missile has been derived by extensively calculating the Kinetic energy of the engine 
and the using it in Lagrange’s equation [1]. However the calculations have been re-
done in order to consider our different sign convention for angles and ξ. 
 
The final forces due to engine inertia acting at the hind end of the missile are given 
by, (24a) 

,E X RF m u= − �  

[ ], ( ) (0) (0) (E Z R R p C R i R i i
i

F m L L L w L q tδ θ φ φ⎡ ⎤′= − − + − − −⎢ ⎥
⎣ ⎦

∑�� �� � � )�

⎞

⎠

E

 
(24b) 

 
And the couple due to the engine swivel is given by, 

( ) (0) ( ) (0)E R R C i i R p i i
i i

C m L w L q q t I q q tφ δ φ⎡ ⎤ ⎛ ′= + + + + −⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝

∑ ∑��� � �� � ��   (25) 

 
Hence, the net moment is given by, 

,E C E ZM L F C= +  
 (26)  

Again as before, we take contribution of forces and couples due to engine inertia and 
swiveling into the distributed force and couple per unit length as, 

( , ) ( )E Ep x t F xδ=  
 (27) and,               ( , ) ( )E Ec x t C xδ=  

where, ( )xδ  represents the Dirac-delta function. 
 
 
2.6.3 Forces and moments due to Aerodynamic forces (FE) 
 
Aerodynamic forces in the pitch plane act as a distributed force along the missile 
body, varying according to the angle of attack at that position. 
The force per unit length along the Zb axis at a position where the pitch plane angle of 
attack (i.e. angle between the relative velocity between the missile body at that 
position & the air and the tangent along the missile body at that location) is α' is given 
by, 

2
3

1( )
2

N
A air

Cp x U Aρ α
α

∂ ′=
∂

   (28) 

where, CN = lift coefficient and is a function of angle of attack α, and may be position. 
It is assumed that CN is proportional and linear to α for small values of α. 

Hence, NC
α

∂
∂

 is assumed to be constant. 

A3 =  a constant and is called the reference area used in calculating CN. It’s 
assumed to be 1. 
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An expression for α' can be determined from the angle between the relative velocity 
and the tangent to the body of the missile at the position of interest. 

0
1( )A

q L L x
U x U x

ξ ξα α
⎛ ⎞∂ ∂′ = − + − + + +⎜ ⎟∂ ∂⎝ ⎠

�
 (29) 

Substituting this α' in (28) we get, 
2

3 0
1 1( ) ( ) ( ) ( ) ( ) ( )
2

N
A air A i i i i

i i

C qp x U A L L x q t x q t
U U

ρ α φ
α

∂ ⎡ ⎤′= − + − + + +⎢ ⎥∂ ⎣ ⎦
∑ ∑ � xφ  (30) 

Here we note U = U0 + u. 
 
And the moment due to this distributed force is given by, 

( ) ( )A Ax L p x−   (31) 

 
 
2.6.4 Forces and moments due to Gravity (FG and MG) 
 
The Euler Angles relating the orientation of the global coordinate frame S0 and the 
local coordinate frame Sb be ψ0+ψ, θ0+θ and φ0+φ. Hence S0 is transformed to Sb by 
rotation by these angles about Z0, Y0 and X0 respectively. Here ψ0, θ0 and φ0 denote 
the steady state components and ψ, θ and φ are the perturbation components. 
It may be proved that , ,p q rϕ θ ψ= = =�� � . 
Assuming the gravitational force acts along –Z0, the perturbation components of 
forces and moment due to gravity on the pitch plane are given by, 

, 0 sinG XF m g 0θ θ=  (32a) 
, 0 cosG ZF m g 0θ θ= −  (32b) 

( )0 0sin cosG cg cgM m z x  (33) 0θ θ θ θ= +  
 
These forces and moments are calculated about the origin of Sb. and assumed to be 
acting at that point. Hence we again define, 

( ),( , ) ( )G G Z cg   (34) Cp x t F x x Lδ= − +  
We note that here we have to use ψ, θ and φ which are the integrals of p, q and r. 
 
 
2.6.5 Force and Moment due to Sloshing of Fuel (FS and MS) 
 
The presence of liquid fuel adds some extra degrees of freedom to the system. The 
liquid fuel is modeled as combination of several simple harmonic pendulum attached 
to the missile body. This is called the “hydrodynamic analogy” [9]. 
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lPi 

ΓPi 

Xb

Zb

mPi 

LPi 

fig - 6 

 
 
As shown in the adjacent figure, the ith 

pendulum has been attached to the missile 
body at a distance lPi from origin of Sb. 
The dynamics of a single pendulum can be 
found using Lagrange’s equation of 
motion. 

 
The dynamics of the ith pendulum is governed by the following equation: 

( )0
1 ( ) ( )Pi Pi Pi Pi i i Pi

iPi Pi

U U w q l L q t l
L L

φ⎡ ⎤
Γ + Γ = − + − +⎢ ⎥

⎣ ⎦
∑

��� � � ��    (35) 

 
And the resulting forces and moments are hence given by, 

  (36a) 
, 0S XF �  

  (36b) 
,S Z Pi Pi

i
F m U= Γ∑ �  

S Pi Pi
i

M m l U Pi= − Γ∑ �  (37) 

 
And as before, 

( )( , ) ( )S Pi Pi Pi
i

Cp x t m U x l Lδ= Γ − +∑ �  (38) 
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2.7 State space formulation of the system and design of gain matrix 
for state feedback 

 
Now that we have obtained the governing equations (10), (20) and (35) of the system, 
and have obtained expressions for the perturbation components of the forces and 
moments to be used in equation (10) and (20), we now nee to identify the state 
variables. 
We note that because of elimination of the steady state components the equations and 
the expressions for firces and moments should be linear in the state variables. Hence 
on substituting the expression for forces and moments we can express the equations 
(10) and (20) as linear in the state variables. 
 
2.7.1 Identifying the state variables and the governing equations  
 
The state variables can be identified to be, 
u, v, w, 
ψ, θ, φ, 

( ), ( ), (p q r )ϕ θ ψ= = =�� � , 
, ( )i i iq r q= � ,  [i = 1 to Nmodes] 

, ( )Pi Pi PiΓ Φ = Γ� , [i = 1 to Nslosh] 
 
Hence there are [ 9 + 2 Nmodes + 2 Nslosh ] state variables. 
Equation (10) gives 6 equations; (20) gives Nmodes equations; (35) gives Nslosh 
equations; 

, ,p q rϕ θ= = =�� ψ� i gives 6 equations; ir q= �  gives another Nmodes equations; 

PiΦ = Γ� Pi

Γ Γ Γ

 gives another Nslosh equations. 
Hence we have a total of [ 9 + 2 Nmodes + 2 Nslosh ] equations. 
Let, NS = 9 + 2 Nmodes + 2 Nslosh
 
2.7.2 The state-space formulation 
 
Let the state vector be represented by, 

mod mod mod1 2 1 2 1 2 1 2es es es slosh

T

N N N Nu v w p q r q q q r r rϕ θ ψ⎡ ⎤= Φ Φ Φ⎣ ⎦s " " " "
 

(39) 

 
Let the input/control parameters be represented bu the vector u. The elements in u are 
such that their coefficients in the equations (10), (20) and (35) are constant. One 
parameter obeying that property is δp. Hence in the present problem, we choose u to 
be a single element vector: u = δp. We may note that the equations also contain terms 
in pδ��  contributed by force and moments due to engine inertia and swivel. 
 
Let the NS equations when expanded and simplifies be represented in state-space form 
as, 

= + + + +0 1 2As Bs C u C u C u D� � ��  (40) 
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Once the matrices in (40) are known, simulating the system by integration of the 
equation won’t be difficult. We have used first order Runge-Kutta method to integrate 
this equation. 
So our primary aim is now to determine A, B, C0, C1, C2 and D from equations (10), 
(20) and (35). 
 
2.7.3 Stability of the system without feedback 
 
Equation (40) may be re-written as, 

( )1−= + + + +0 1 2s A Bs C u C u C u D� � ��  
Hence, if u is bounded and independent of s, the system will be stable iff all the 
eigenvalues of A-1B have non-positive real parts. 
 
2.7.4 Determination of gain in state feedback 
 
2.7.4.1 Proportional Control 
 

We take , where K is the gain matrix. Since in the present problem, u has a 
single element, K is a vector with N

T=u K s
S elements. 

 
Hence (40) becomes, 

1 2
T T T= + + + +0As Bs C K s C K s C K s D� �  �� (41) 

We substitute  and write =s τ� ⎡ ⎤
⎢ ⎥
⎣ ⎦

τ
ς . =

s
Hence, we have, 

( ) ( ) ( ) ( )⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

-1 -1T T T
2 1 2 0C K A - C K - C K B + C KT

ς = ς
I 0

�  (42) 

 
However the above equation’s validity is subjected to the existence of . And 
as a matter of fact, this inverse won’t exist since both C

( -1T
2C K )

2 and K are vectors and hence 
the matrix C K  is if rank 1. Hence we can’t use proportional control. T

2

 
2.7.4.2 Integral Control 
 

Now we assume . 
0

t
T dt= ∫u K s

This gives  and . T=u K s� T=u K s���
 
Substituting in (40), 

t

dt∫T T T
0 1 2

0

As = Bs + C K s + C K s + C K s + D� �  (43) 
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Substituting 
0

t

dt =∫ s τ  i.e., , and writing τ = s� ⎡ ⎤
⎢ ⎥
⎣ ⎦

s
ς =

τ
, 

We have, 

( ) ( ) ( )⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

-1 -1T T T
2 1 2 0A - C K B + C K A - C K C KT

ς = ς
I 0

�  (44) 

 
Now, since the inverse of A is expected to exist (else eqn (40) can’t be integrated at 
all), and the rank of C K  is 1, the matrix  is expected to be invertible. T

2
T

2A - C K
 
Hence using integral control equation (44) is the primary equation to be solved in 
order to obtain the state at any instant of time. 
 
2.7.5 Stability of the system with integral state feedback 
 
Stability id determined by whether the eigenvalues of 

( ) ( ) ( )( )
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

-1 -1T T T
2 1 2A - C K B + C K A - C K C KM K

I 0

T
0  (45) 

have non-positive real parts. 
Out aim in designing K will be to place the poles of M to the left side of the 
imaginary axis. However achieving this analytically seems to be rather difficult. 
Hence we tried to adopt some numerical methods, though without much success! 
 
2.7.6 Numerical methods for placing poles of M 
 
For some particulat values of thrust and U0, the open loop system was found to 
become unstable, i.e. some of the poles of M had positive real parts for K = 0. Hence 
we now try to design a suitable K for stabilizing the system. 
 
2.7.6.1 Newton-Raphson’s method for pole placement of  M 
 
For a given set of target poles λ1, λ2, … , λ2Ns for the matrix M, we define a vector 
function, 

1

2

2

det[ ( ) ]
det[ ( ) ]

( )

det[ ( ) ]
SN

λ
λ

λ

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

M K I
M K I

g K

M K I
#

 (46) 

Hence we should find a K such that g(K)=0. 
This was attempted by Newton-Raphson iteration for vector functions given by, 

{ } 1

1 [ ( )] [ ( )]T T T T
n n n n

−

+ = − ∇K K g K g K  (47) 
 
However this iteration failed to converge! 
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2.7.6.2 Genetic algorithm for searching a suitable K 
 
We tried to search for a K such that the poles of M fall on the left side of imaginary 
line by using the principles of genetic algorithm. We started with an initial population 
of vectors K and determined fitness of each of them. The fitness function was 
designed so that more the eigenvalues are to the left of the complex plane, the better is 
the fitness. We performed crossing between the K’s with higher fitness and next 
continued with the new population until a K is obtained for which all the eigen values 
of M fall to the left side of the complex plane. However this method also failed to 
give a feasible solution. 
 
2.7.6.3 Search for elements of K over a wide range using method of score 

assignment 
 
In this method we start with an initial guess of K. Then we take each element of K at 
a time and cause it to change and hence observe how the eigenvalues are changing. 
Say we are considering Ki. 
We define a ‘score’ si which is defined as follows: 

{ } { }( ) Re [ ( )] Re [ ( ( ))]iC
i i is c eig M K eig M K n n− +⎡ ⎤Δ = − Δ + Θ − Θ⎣ ⎦∑  (48) 

where  represents the K matrix when its i( )iCK Δ th element is changed by , Δ
eigi represents the ith eigenvalue, 
n- is the number of eigenvalues that have moved from the positive real to negative real 
side of the complex plane because of change of K to ( )iCK Δ , 
and n+ is the number of eigenvalues that have moved from the negetive real to 
positive real side of the complex plane because of change of K to , ( )iCK Δ
c is a constant. 
 
Evidently we will prefer a change for which the score is high. Hence we find the 
changes, , for each KΔ i for which ( )is Δ  is maximized. However  was found to 
be changing very arbitrarily with 

( )is Δ
Δ . Hence Newton-Raphson iteration for this 

optimization didn’t succeed. 
 
The search for Δ  was performed over a wide range by the method of bracketing. In 
this method a wide zone of  was chosen and it was divided into a finite number of 
sub-zones. The value of  is then evaluated at the mid-point of each sub-zone. 
The zone for which the value is maximum is retained and the remaining discarded. 
This new zone is then again divided and the process is continued for several number 
of steps. 

Δ
( )is Δ

 
Finally only the top 2-3 Ki’s are chosen and the corresponding optimized changes are 
added to the respective elements of K. This process is repeated unless a K is obtained 
corresponding to which all the eigenvalues of M lie to the left side of the imaginary 
axis. 
 
This method worked and could finally give a K for which all the poles of M were 
placed to the left side of the imaginary axis. 
However a few elements of K hence obtained were extremely large and resulted in 
eigenvalues of very large magnitude. An attempt for solving eqn (44) using this K led 
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to divergence. However it was found that if the time steps for integration of (44) could 
be decreased to a great extent, no divergence was detected. However this also meant 
slow calculation and even after running the program with this reduced time steps no 
observable changes in the state variables was observed. Hence, though a 
mathematically feasible solution fore K could be obtained, it’s practical feasibility in 
either simulations or real model is questionable! 
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3 Numerical simulations, results and discussions 
 

3.1 Implementation in MATLAB code 
 
In the present implemented model, everything except force due to sloshing has been 
incorporated. As mentioned before, the model has been restricted to pitch plane. 
However the code is kept flexible enough in order to incorporate these things very 
easily. The primary features of the code are: 
 
State vector representation: The state vector is defined as in (39) except the last 2 

Nslosh elements for the sloshing. 
 
Expressions defined as vectors: It is observed from eqn (10) and (20) that if we write 

the forces and moments in the equation and try to simplify them in pen-paper, the 
equations hence obtained will not only become huge and cumbersome, but also 
difficult to debug or modify. Hence we adopted an innovative way of representing 
the expressions for Force, Moment, etc. and then use them directly in equation (10) 
and (20), while keeping the individual terms of the state variables and their 
derivatives separate from each other. 
We represent an expression in form of a vector where the elements represent the 
coefficients of the state variables and their derivatives, and the other constant terms. 
 

Hence, if we define, 

mod mod mod1 2 1 2 1 21
es es es

T

N N Nu v w u v w p q r p q r r r r r r r q q qϕ θ ψ⎡ ⎤= ⎣ ⎦ν u u u�� � � � � � � � � � �" " "
 

(49) 

and E represents the ‘expression vector’ of an expression E, then, 
TE = E ν  (50) 

 

It may be noted that if  and , then . 1 1
TE = E ν 2 2

TE = E ν ( )1 2 1 2
TaE bE a b+ = +E E ν

Since we note that in (10) and (20), and in fact everywhere because of linearization 
of the equations, the expressions only get summed/subtracted. Hence we can easily 
define and deal with the expression vectors and not the expressions as a wholeand 
keep the terms of the state variables separate. 
Hence we determine the expression vectors for the forces and moments due to 
thrust, engine inertia, aerodynamic forces and gravity and use then in (10) and (20) 
to get equations of the form 0eqn =E , where  is the expression vector 
corresponding to the expression on one side of the equation when all the terns are 
taken to one side. Now the task reduces to adding new rows to matrices A and B, 
and new elements to C

eqnE

0, C1, C2 and D using the elements of . eqnE
 
Flexible and easily understandable code: The code consists of separate .m files for 

each objects described above. For example, The main time loop calls separate 
functions to evaluate the contributions of each of the forcing factors to a global 
variable for describing the net distribution of forces and moments on the missile 
body; separate functions for including elements into the matrices of state-space 
equation (40) contributed by the rigid body equations (10) and the flexibility of the 
beam (20). This enables us to turn on or off some particular forcing according to our 
will. 

 
The MATLAB code has been provided in Appendix-I
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Schematic flowchart for simulation of the system 
 
 Start 
 

Initiate global variables, assign 
global constants, calculate natural 

frequencies and mode shapes. 

Time loop start 
time = 0:dt:EndTime 

Is 
NOT(time invariant 

system) OR time=0 ? 

Add contributions of thrust, 
engine inertia, aerodynamic 

forces and gravity into the global 
expression vector for distributed 

force/moment. 

Add new rows to matrices A and B, and 
new elements to C0, C1, C2 and D to 

incorporate the equations (10) and (20).

Yes 

Is 
System Stable ? 

Calculate gain K in order to 
place all poles of M to left 

side of imaginary line. 

K = 0 

Yes 

No 

Update state vector, s, for the next 
time step by integrating (40). 

Loop 

No 

Plot stored results

End 

fig - 7 
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3.2 Results 
 
The system was simulated for several cases and plots were made to demonstrate the 
results. The following sections describe the results: 
 
3.2.1 Simulation – 1 
 
The simulation was performed with the following parameters and specifications: 
 
L0 = 1;  LC = 0.5;  LR = 0.04;  LA = 0.5;  A = π 0.12 / 4; 
ρ = 2600;  E = 107;   
mR = 0.1;  mM = ρ L0 A;  
ψ0, θ0 and φ0
U0 = 1000;  TC = TS = 107; 
The system matrices are time invariant; 
Nmodes = 10;  Nslosh = 0;  NS = 29; 
 
The poles of the open loop system, i.e. eigenvalues of A-1B are found to be, 

 

  1.0e+005 * 
 
        0           
        0           
        0           
        0           
        0           
  -0.0284 + 2.7800i 
  -0.0284 - 2.7800i 
  -0.0233 + 2.2731i 
  -0.0233 - 2.2731i 
  -0.0188 + 1.8188i 
  -0.0188 - 1.8188i 
  -0.0148 + 1.4154i 
  -0.0148 - 1.4154i 
  -0.0114 + 1.0625i 
  -0.0114 - 1.0625i 
  -0.0084 + 0.7596i 
  -0.0084 - 0.7596i 
  -0.0059 + 0.5066i 
  -0.0059 - 0.5066i 
  -0.0039 + 0.3033i 
  -0.0039 - 0.3033i 
  -0.0026           
  -0.0013 + 0.0333i 

Im 
  -0.0013 - 0.0333i 
  -0.0024 + 0.1487i 
  -0.0024 - 0.1487i 
        0           
        0           
        0           
 

 Real 
 fig - 8 
Hence, the system is stable. Thus the gain K is taken to be zero. 
 
The natural frequencies and the corresponding A and B (of equation (13)) are found to 
be: 
 

Mode 1: beta=4.7300407449, A=-5.764552e+001, B=5.663685e+001, omg=5.804464e+003 
Mode 2: beta=7.8532046241, A=-1.285985e+003, B=1.286984e+003, omg=1.600023e+004 
Mode 3: beta=10.9956078380, A=-2.980687e+004, B=2.980587e+004, omg=3.136684e+004 
Mode 4: beta=14.1371669412, A=-6.897044e+005, B=6.897054e+005, omg=5.185100e+004 
Mode 5: beta=17.2787595947, A=-1.596026e+007, B=1.596026e+007, omg=7.745643e+004 
Mode 6: beta=20.4203522483, A=-3.693315e+008, B=3.693315e+008, omg=1.081829e+005 
Mode 7: beta=23.5619449019, A=-8.546586e+009, B=8.546586e+009, omg=1.440306e+005 
Mode 8: beta=26.7035375555, A=-1.977739e+011, B=1.977739e+011, omg=1.849992e+005 
Mode 9: beta=29.8451302091, A=-4.576625e+012, B=4.576625e+012, omg=2.310890e+005 
Mode 10: beta=32.9867228627, A=-1.059063e+014, B=1.059063e+014, omg=2.822999e+005 

 

 26



The initial condition was taken to be that the missile is disturbed in its first mode and 
released. Hence all the state variables, except q1 is taken to be zero. And q1 = 0.001 
was taken initially. The simulation was performed from 0 to 0.01s, with dt = 10-7. 
 

The shape of the missile at 10 different instants of time were captured: 

displacement ↑ 

 
    x 

→fig - 9  

 
The displacement at 3 points on the missile with time: 

displacement ↑ 

 
    t 

→fig - 10  
It may be observed that the missile primarily tries to deform in the first mode, while 
the other modes get excited slightly. The vibration amplitude dies down with time due 
to presence of viscous damping. 
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3.2.2 Simulation - 2 
 
The same missile with the same specifications is again used, except that U0  is 
changed to U0  = 5000. 
Hence the modes and natural frequencies remain the same. But the poles of open loop 
system change. The poles of the open loop system, i.e. eigenvalues of A-1B are now 
found to be, 
 
  1.0e+005 * 
 
        0           
        0           
        0           
        0           
        0           
  -0.0319 + 2.7801i 
  -0.0319 - 2.7801i 
  -0.0267 + 2.2732i 
  -0.0267 - 2.2732i 
  -0.0223 + 1.8189i 
  -0.0223 - 1.8189i 
  -0.0183 + 1.4155i 
  -0.0183 - 1.4155i 
  -0.0149 + 1.0625i 
  -0.0149 - 1.0625i 
  -0.0119 + 0.7597i 
  -0.0119 - 0.7597i 
  -0.0094 + 0.5068i 
  -0.0094 - 0.5068i 
  -0.0075 + 0.3034i 
  -0.0075 - 0.3034i 
  -0.0051           
  -0.0080 + 0.0283i 
  -0.0080 - 0.0283i 
  -0.0059 + 0.1495i 
  -0.0059 - 0.1495i 
        0           
        0           

Im 

        0           

 
Real fig - 11  

 
The system now it is excited initially in the 3rd and 5th modes by amounts q3 = 5x10-9 
and q5 = 10-9 respectively. 
 
The simulation was performed from 0 to 0.0001s, with dt = 10-8. 
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The shape of the missile at 10 different instants of time: 

 

displacement ↑ 

 
The displacement at 3 points on the missile with time: 

 

fig - 12 

fig - 13 

    x 

→

displacement ↑ 

    t 

→
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3.2.3 Instability at larger U0
 
The system was again set with parameters same as before, except that now U0  = 
10000. 
Now the poles of the open loop system was found to be, 
 
  1.0e+005 * 
 
        0           
        0           
        0           
        0           
        0           
  -0.0363 + 2.7803i 
  -0.0363 - 2.7803i 
  -0.0311 + 2.2734i 
  -0.0311 - 2.2734i 
  -0.0267 + 1.8191i 
  -0.0267 - 1.8191i 
  -0.0226 + 1.4157i 
  -0.0226 - 1.4157i 
  -0.0192 + 1.0628i 
  -0.0192 - 1.0628i 
  -0.0163 + 0.7598i 
  -0.0163 - 0.7598i 
  -0.0138 + 0.5071i 
  -0.0138 - 0.5071i 
  -0.0121 + 0.3032i 
  -0.0121 - 0.3032i 
   0.0244           

Im 
  -0.0332 + 0.0404i 
  -0.0332 - 0.0404i 
  -0.0095 + 0.1528i 
  -0.0095 - 0.1528i 
        0           
        0           
        0           

 fig - 14 Real 
 
Here we observe that one of the poles (0.0244) lies no the right side of the imaginary 
axis. Hence the system is unstable and the solution diverged on integrating. 
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3.2.4 Root locus with variation of U0 
 
Keeping everything else same as mentioned in Simulation-1, we varied U0 from 100 
to 20000 in order to observe how the poles of the open loop system vary with it. 
 

 

Imaginary 

fig - 15 Real  
Magnified view of the above root locus at the region marked by the dotted box: 
 

 

Imaginary 

Real 
fig - 16 
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3.2.5 Root locus with variation of TC 
 
Keeping everything else same as mentioned in Simulation-1, we varied TC from in 
order to observe how the poles of the open loop system vary with it. 
 

 

Imaginary 

Real fig - 17 
 
The plot is magnified at the region marked by the dotted box: 
 

 

Imaginary 

Real 
fig - 18 
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3.2.6 Attempt of finding a suitable gain, K, for stabilizing the system in an 
unstable situation 

 
The system with U0 = 1000;  TC = TS = 107 was found to be unstable. In order to 
stabilize this system we tried to implement an integral feedback control loop. 
As mentioned earlier, for stabilizing the closed loop system we need to place the poles 
of the matrix M in eqn (45) to the left of the imaginary axis. 
Attempts to find a suitable K by Newton-Raphson iteration or Genetic Algorithm 
failed. However a last method of searching for individual elements of K and assigning 
score according to ability of the element to push poles to the left succeeded. 
The poles of M with zero K were, 
 

 
  1.0e+005 * 
 
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
        0           
  -0.0363 + 2.7803i 
  -0.0363 - 2.7803i 
  -0.0311 + 2.2734i 
  -0.0311 - 2.2734i 
  -0.0267 + 1.8191i 
  -0.0267 - 1.8191i 
  -0.0226 + 1.4157i 
  -0.0226 - 1.4157i 
  -0.0192 + 1.0628i 
  -0.0192 - 1.0628i 

fig - 19   -0.0163 + 0.7598i 
  -0.0163 - 0.7598i 
  -0.0138 + 0.5071i 
  -0.0138 - 0.5071i 
  -0.0121 + 0.3032i 
  -0.0121 - 0.3032i 
  -0.0095 + 0.1528i 
  -0.0095 - 0.1528i 
   0.0244           
  -0.0332 + 0.0404i 
  -0.0332 - 0.0404i 
        0           
        0           
        0           
        0           
        0           
        0           

 
The pole to the right of the imaginary line is the cause of instability.
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The K determined by the foresaid method was, 
K = [ 0 9.6006e+024 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]T

 
Note that one of the elements of K is very large, while the others are almost zero. 
 
This K shifted the new poles of M as shown: 
  

  
 
It may be noticed that one pole has been shifted to a location of the order of about 
1031 to the left (marked by dotted circle). However the other poles remain at normal 
location, as can be seen on magnifying the zone marked by the dotted rectangle: 

 

fig - 20 

fig - 21 
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On further magnification: 

 
 
Hence we can see that no poles are any more to the right of the imaginary line. 

fig - 22 

 
However because of the presence of such a high gain the First Order Runge kotta 
method for integrating (40) failed to converge. 
Convergence was however observed on using very small time steps. But then the net 
tome over which the integration can be performed reduced markedly. Hence the 
values of the state variables almost remained un-changed. 
 
 
3.3 Discussions and Conclusions 
 
1. The dynamics of short-period motion of missile was implemented in MATLAB 

code taking into account the flexibility of the missile and forcing due to factors 
like thrust, gravity, engine inertia, and aerodynamics. 

2. The code was implemented keeping in mind it’s easy changeability and 
flexibility. 

3. The model was developed considering the forces and their perturbation 
components to be acting only in the pitch plane. 

4. Though a control scheme could be developed and a gain for stabilizing an 
unstable case could also be developed, the gain being of extreme high 
magnitude resulted in divergence of the simulation. 
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4 Study on stability of flow 
 
4.1 Origin of Turbulence and ways to analyze stability of a flow: 
 
Flow induced vibration is caused in structures by forcing due to time variant pressure 
acting on the surface of the structure. If the flow is imagined to be a linear 
superposition of a steady state laminar flow and a perturbation flow field, the laminar 
flow won’t cause the forcing on the structure as it acts as a time invariant pressure on 
the structure’s surface. It is the perturbation flow field that varies with time and hence 
produces forcing on the structure’s surface. 
This same perturbation flow field is the sole cause of Turbulence in the flow. The 
origin of the perturbation flow field may be something like a very small disturbance 
caused in the laminar flow field. A flow is said to be stable if for any small initial 
disturbance (i.e. perturbation) added to the laminar flow field, the perturbation flow 
field gradually dies down with time. It will be termed as a Transitional flow if the 
perturbation flow field gets magnified with time, which in turn gives rise to 
Turbulence. Hence our primary approach will be to investigate the nature of variation 
of a perturbation flow field with time. 
 
4.2 The Orr-Somerfeld equation for two-dimensional flow 
 
A two-dimensional incompressible flow is governed by the Navier Stoke’s equations, 

  
2 2

2 2

1 1
X

u u u p u uu v F
t x y x x y

ν
ρ ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
+ + = − + +⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎟  (51a) 

2 2

2 2

1 1
Y

pv v v v vu v F
t x y y x y

ν
ρ ρ

⎛ ⎞∂∂ ∂ ∂ ∂ ∂
+ + = − + +⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎟  (51b) 

and the continuity equation, 

 0u v
x y
∂ ∂

+ =
∂ ∂

 (52) 

 
Let us consider a steady-state laminar flow over an infinitely long plate. 
 

For this flow, 
 u = U(y) 
 v = 0 (53) 
 p = P(x) 
 
 

 
Now let the perturbation field be described by the perturbation components denoted 
by a ‘prime’ upon the steady-state laminar variables. 
Hence the final flow field will be described by, 
 

 u = U(y) + u’(x, y, t) 
 v = v’(x, y, t) (54) 
 p = P(x) + p’(x, y, t) 

 

fig - 23 

Y 

X 
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Now, both the steady-state laminar field (53) and the superposed field (54) satisfies 
equation (51) and (52). Hence by substituting them in (51) and (52) and performing 
some simplification, we obtain the equations governing the perturbation flow field, 

 2' ' 1 ''u u U pU v
t x y x

ν
ρ

∂ ∂ ∂ ∂
+ + + = ∇

∂ ∂ ∂ ∂
'u  (55a) 

  2' ' 1 ' 'v v pU
t x y

ν
ρ

∂ ∂ ∂ v+ + = ∇
∂ ∂ ∂

 (55b) 

' ' 0u v
x y

∂ ∂
+ =

∂ ∂
              (55c) 

 
From these equations, with a known velocity profile U(y), we may obtain solutions 
for u', v', and p'. Our present aim will be to determine for a given velocity profile 
U(y), the coefficient of viscosity ν and the boundary & initial conditions of the 
perturbation fields, whether or not the perturbation components die down with time. 
In order to satisfy eqn. (55c), we define a stream function ( , , )x y tψ  such that 

 'u
y
ψ∂

=
∂

 and 'v
x
ψ∂

= −
∂

  (56) 

 
It is now assumed that the disturbances, and hence ψ  is superposition of several 
periodic disturbances (periodic in x) propagating along the direction of flow. 
Hence, we substitute, 
 (( , , ) ( ) i x tx y t y e )α βψ φ −=  (57) 
 

ψ  is said to be periodic on x with frequency α  and wavelength 2
X

πλ
α

= . Though α  

can be assumed to be real, β  being the time frequency should be assumed to be 
complex in order to keep the possibility of non-periodic magnification or decay of ψ  
with time. The final ψ  will be superposition of all the solutions of ψ . 
We define the complex velocity of propagation of the disturbance as 

 rc c ii cβ
α

= = +  (58) 
[ ( )( ) i rc t i x c ty eαψ φ + − ]∴ =  

It may be noted that for , the solution of 0ic < ψ  dies down with time, and hence so 
does the perturbation components. Thus the flow is stable for  and tends to 
become turbulent for . 

0ic <
0ic >

 
We put u' and v' in terms of φ , α  and β  in (55a) and (55b) and eliminate p' to obtain 

a single equation. We non-dimensionalize the equations by redefining y as y
δ

, U as 

m

U
U

, c as 
m

c
U

, where Um is the free-stream velocity of the flow and δ  is the 

boundary layer thickness. 
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The non-dimensionalized equation hence obtained is called the Orr-Sommerfeld 
equation: 
  

 ( )2 2( )( ) 2iU c U
R

4φ α φ φ φ α φ α φ
α

′′ ′′ ′′′′ ′′− − − = − − +  (59) 

where, mUR δ
ν

=  is the Reynolds Number. 

 
A trivial solution to eqn.(59) is 0φ = . For non-trivial solution, for a given α  and R, 
we obtain an eigenvalue of c and the corresponding eigenfunction φ . Hence our 
immediate target is to find an eigenvalue solution of (59). 
 
4.3 Boundary conditions for the Orr-Sommerfeld equation 
 
4.3.1 Boundary conditions for flow over a rigid, static surface 
 
For this case, 

At y = 0, 
v' = 0 and u' = 0 

⇒  (0) 0φ =  and (0) 0φ′ =  
At y→∞, 

v' = 0 and u' = 0 
⇒  ( ) 0φ ∞ =  and ( ) 0φ′ ∞ =  

 
 
4.3.2 Boundary conditions for two-dimensional flow over a beam 
 

p'(x,0,t) We consider flow over an infinite flexible beam. 
The net unbalanced force acting on the beam is p'. 
Hence, the differential equation governing the 
motion of the beam is given by, fig - 24

 
2 4

2 ( ,0, )w p x t EI
t x

λ 4

w∂ ∂′= − −
∂ ∂

 (60) 

Where, w denotes the displacement of the beam in Y direction, λ  is mass per unit 
length of the beam. The forcing on the beam is due to the time-variant perturbation 
pressure. It is to be noted in this case that equations (55), (59) and (60) gets coupled. 
One way of solving the equation will be as follows. As p' is of the form of ( )i x te α β− , 
we may write for eqn. (60), 
 (( , ) i x tw x t k e )α β−=  (61) 
 
Substituting this w in (60) and hence substituting the hence obtained p'(x,0,t) into 
(55a), and Substituting v' in terms of φ  in the same (55a) equation, all at y = 0, we 
obtain, 

 
( )

2

2 4

(0) (0) ( ) (0) (0)i U i
k

i EI

ρ α φ α ν β φ νφ

α λβ α

′ ′⎡ ⎤− − +⎣ ⎦=
−

′′
 (62) 
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Hence the boundary conditions become, 
At y = 0, 

v' = w  and u' = 0 
i

⇒  (0) kβφ
α

= −  and (0) 0φ′ = , where k  is the non-dimensionalized k. 

At y→∞, 
v' = 0 and u' = 0 

⇒  ( ) 0φ ∞ =  and ( ) 0φ′ ∞ =  
 
Hence, as it can be seen, one of the boundary conditions is a bit more complex 
involving φ , φ ′ , φ ′′  and c. 
The numerical technique for solving the Orr-Sommerfeld equation for the eigenvalues 
and eigenfunctions in either of the cases will remain similar, except that the boundary 
conditions are modified. However till date we have only investigated the case ‘A’, i.e. 
the case of flow over a rigid, static plate. 
 
 
 
4.4 Numerical methods attempted for solving the Orr-Sommerfeld 

equation 
 
4.4.1 Galerkin’s Method 
 
This method, though can handle the case of flow over a rigid, static plate 
satisfactorily, its application in solving the case of flexible plate is difficult. The 
method for the case of flow over a rigid, static plate is described below in brief. 
 
We denote eqn.(59) by ( ) 0φΓ = , where Γ denotes the operator. We write φ  as a 
linear superposition of several functions iφ  that satisfy the boundary conditions given 
in 4.3.1 Such functions were chosen to be of the form, y

i y eη μφ −= . 
Hence we write, 

 
1

( ) ( )
n

i i
i

y yφ ξ φ
=

=∑  

We now define an error, 

  (63) 
1

( ) ( )
n

i i
i

e y yξ φ
=

⎛
= Γ⎜

⎝ ⎠
∑ ⎞

⎟

We need to choose the values of iξ  in such a way that this error is minimized. We do 
that by solving the set of n equations, 
 , ie φ 0= , i = 1 to n (64) 

where, ,i jχ χ  denotes the inner product given by, 

0

, i ie eφ φ
∞

= ∫ dy  
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The n equations in (64) have iξ  as the unknowns and can be represented in the matrix 
form as, 

 [ ]
1

0

n

M
ξ

ξ

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦

#  (65) 

Where the matrix [M] contains the unknown c. 
For non-trivial solution of this equation, we must have, 
 [ ] 0M =  (66) 

In general we’ll obtain n solutions for c. We should chose the one for which the iξ s 

are such that 
1

( )
n

i i
i

yξ φ
=

⎛
Γ⎜
⎝ ⎠
∑ ⎞

⎟  is minimum. 

This method was implemented in Mathematia 5.1 and a rather unsatisfactory result 
was obtained probably due to the following reasons: 

i. Due to limitation of computational power, n had to be limited to 4 in order to 
get a satisfactory and accurate integration value of the inner product and 
solution of c from (66). 

ii. The choice of η  and μ  in choosing the functional forms were done 
arbitrarily. 

The Mathematica code has been given in Appendix-II. 
 
We determined the eigenvalues c for different α and R and plotted the contour in the 
α-R plane for which ci = 0. This contour will mark the margin between the stable and 
unstable zones of α and R. However the contour ci = 0 could not be found 
satisfactorily in the fist quadrant of α-R plane. But on plotting a contour plot of ci , the 
following was obtained. The plot demonstrates that the basic shape of the standard 
results is being approached by the solution: 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

 fig - 25
 
The horizontal axis denotes R and the vertical axis denotes α. 
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4.4.2 ‘Automated search of eigenvalues’ –  Integration by Runge-Kutta 
 
This method primarily proposed by Betchov & Criminale [7], deals the regions above 
and below the boundary layer separately. We first investigate the Orr-Sommerfeld 
equation (59) for y > 1. In this region, the non-dimensionalised velocity is U = 1. 
Hence the equation is modified as, 

 ( )2 2(1 )( ) 2ic 4

R
φ α φ φ α φ α φ

α
′′ ′′′′ ′′− − = − − +  for y > 1 (67) 

 
This equation being 4th order linear in φ  with constant coefficient has simple 
analytical solution given by, 

 
4

1
( ) jp y

j
j

y A eφ
=

=∑  (68) 

where, pj are the roots of, 

 ( ) ( 22 2 2 2(1 ) ic p p
R

α
α

− − = − − )α  (69) 

 
Hence,  1p α= ,   1p α= −  

  
1

2

3 1 (1 )Rp i cα
α

⎡ ⎤= + −⎢ ⎥⎣ ⎦
, 

1
2

3 1 (1 )Rp i cα
α

⎡ ⎤= − + −⎢ ⎥⎣ ⎦
 

 
From boundary condition at ∞, as y→∞, 0φ =  and 0φ ′ = . 
Hence we have, A1 = A3 = 0 for y > 1. 

2 4
2 4( ) p y p yy A e A eφ∴ = + . 

 
Now we argue that, since for y > 1, the solution is a linear superposition of two modes 

 and , the solution for y < 1 will also be linear superposition of these two 
same modes. Hence now our task is to find the solution of these two modes in the 
region y < 1. We attain this by performing two integration passes from y = 1 to y = 0 
independently. We used Runge-Kutta method for this numerical integration. 

2p ye 4p ye

 
Integration Pass – I: 
We start from y = 1 with A2 = 0 and A4 = 1(or some other value). Therefore we take 
the initial values , 4(1) peφ = 4

4(1) pp eφ ′ = , 42
4(1) pp eφ′′ =  & 43

4(1) pp eφ′′′ =  and move 
on integrating towards y = 0. Let the solution obtained in this process be called ( )I yφ . 
 
Integration Pass – II: 
Similarly with A2 = 1(or some other value) and A4 = 0 we obtain the second pass 
integration ( )II yφ . 
 
Hence the final solution is of the form ( ) ( ) ( )I I II IIy a y a yφ φ φ= + . 
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From the boundary conditions at y = 0, 
(0) (0) (0) 0I I II IIa aφ φ φ= + =   and  (0) (0) (0) 0I I II IIa aφ φ φ′ ′′ = + = , 

for non-trivial solution of aI and aII, we must have, 

 
(0) (0)

0
(0) (0)

I II

I II

φ φ

φ φ
=

′ ′
 (70) 

 
It is to be noted that the only unknown in (70) for a given α and R is c. Hence from 20 
we obtain the eigenvalue c. The corresponding eigenvector gives aI and aII , and hence 
the final solution of ( )yφ . 
 
Search for Eigenvalue in c-plane: 
 
However it was not possible to solve c explicitly from (70). Hence we assumed some 
c and determined the solutions from the two integration passes, ( )I yφ  and ( )II yφ . 
For those particular solutions we defined, 

 
(0) (0)

( )
(0) (0)

I II

I II

f c
φ φ

φ φ
=

′ ′
 

As we know f(c) should converge to 0, we used an iteration scheme [7] as follows. 
We start with an arbitrary value of c and some small value of cδ  and go on updating 
it using the following iteration, 
  

 
1

( ) 1
( )

f c cc c
f c

δλ δ
−

⎛ ⎞+
Δ = − −⎜ ⎟

⎝ ⎠
 

 c c c← +Δ  
 c cδ μ← Δ  
where, λ  = 1, 0.8 or 0.5 depending on whether the convergence is fast, moderate or 

slow, and, 1
4

μ = . The iteration continues till cΔ  reaches a substantially small value. 

 
The procedure was implemented in MATLAB and the code has been provided in 
Appendix-III. 
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Like before, we once again searched for the contour of ci = 0 in the α-R plane. The 
results obtained, though not satisfactory, is described in the following plot of 20 
points: 

 
fig - 26 

The primary reason for the deviation of points from a single smooth contour is the 
high oscillation of the solution ( )II yφ  as the second numerical integration approaches 
y = 0. This fact is well demonstrated in the following plot of the amplitude of ( )II yφ  
vs. y for a particular α and R: 

 fig - 27
 
The small amplitude of ( )II yφ  is due to the initial choice of a small A2 for the second 
Integration pass. 
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4.4.3  Modified second Integration Pass using Stations in between: 
 
This method, as explained by Betchov & Criminale [7], was implemented in order to 
reduce the oscillation of the second solution. The main principle of this method is 
based on the choice of some stations in between y = 1 and y = 0. At these stations the 
second integration is paused and it is updated by linearly combining with the first 
integration ( )I yφ  to make A4 = 0. 
We are presently working on this technique and hope to obtain some satisfactory 
result very soon. Once we obtain a solution for the case of flow over a rigid, static 
plate, we’ll attempt the solution for the case of flow over a flexible plate (modeled as 
an infinite beam) on the similar line. 
 
 
4.5 Conclusions and discussions 
 
Though a satisfactory numerical simulation could not be performed for studying the 
stability of flow over a flexible surface, the theory developed can have future 
applications. Proper numerical methods adopted for solving the Orr-Sommerfeld 
equation with the appropriate boundary conditions is expected to give a smooth ci = 0 
contour in the α-R plane, which in turn will give the critical Reynolds number that we 
are searching for. 
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5 Scope of future works 
 
In future the dynamic model of the missile can be made more accurate by the 
following ways: 

i) Inclusion of the yaw plane forces, 
ii) The mode shapes and frequencies of a real life missile may be found 

experimentally or by FEM simulations and used instead of the modes of a free-
free beam. 

iii) Greater number of modes may be included. 
iv) Better methods of determining the gain matrix K may be used to obtain more 

suitable values of the gain. 
v) Effects of other types of forcing, including sloshing may be included. 
vi) Higher order integration schemes will give better results 
vii) The model once properly and completely developed, may be used as observer 

system with the real plant. 
 
And as far as the study on stability of flow is concerned, as said before, a proper 
numerical solution couldn’t be achieved. In future, with the use of better methods for 
solving the Orr-Sommerfeld equation with the appropriate boundary conditions, we 
may determine the critical Reynolds number for flows over flexible surfaces. 
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Appendix – I 
 

Matlab Code for simulation of dynamics and control of the flexible missile 
 
Below is given the primary M-files that were implemented. The function 
‘Solve_System’ is the entry point to the code. 
 
 
globals.m: 
 
function globals 
% ================================================================== 
% Global variable declarations 
% ================================================================== 
 
% Control parameters 
global del_p d_del_p dd_del_p   % Thrust angle in pitch plane 
global del_y d_del_y dd_del_p   % Thrust angle in yaw plane 
global Tc Ts                    % Thrust values 
 
% Structural Constants 
global materialE materialRho airRho 
global m0 L0 csA meu 
global xcg ycg zcg 
global Ixx Iyy Izz Ixy Iyz Izx 
global LC                     % Distance of the coordinate origin from hind end of the 

missile 
global LR                     % Dist between engine cg and the hinge to which the 

engine is attached 
global La                     % Distance between origine and nose tip of vehicle 
global mR                     % Mass of engine 
global mM                     % Mass of missile without engine 
global I0 IR                  % moment of inertia of engine abt cg and hinge 

respectively 
 
% Net external Forces and Moments --> Time dependant scalers 
global Fx Fy Fz 
global Mx My Mz 
 
% Angle, Velocity and accleration components --> constants 
global U0 V0 W0 
global P0 Q0 R0 
global dU0 dV0 dW0 
global dP0 dQ0 dR0 
global pAng0 qAng0 rAng0 
% Purturbation Angle, Velocity and accleration components --> Time dependant scalers 
global pAng qAng rAng 
global u v w 
global p q r 
global du dv dw 
global dp dq dr 
 
% Structural Variables 
global modesNo          % No. of modes considered on each of pitch plane and yaw plane 
global beta Amode Bmode % Mode shape definitions 
% Pitch plane parameters 
global zeta_p       % Damping coefficient 
global omgMode_p    % Modal frequency for pitch plane modes 
global q_p          % Coefficients of Mode shapes - 'modesNo' Time dependant scalers 
global dq_p         % Time derivatives of q_p 
global ddq_p        % 2nd time derivatives of q_p 
global F_p          % Force per unit length in Pitch plane = force along Z axis --> 

Function of length 
global M_p          % Moment per unit length in Pitch plane = moment along Y axis --> 

Function of length 
global F_p_ddq_coef F_p_dq_coef F_p_q_coef % Global coeficients 
global DC_p DC_p_ddq_coef DC_p_dq_coef DC_p_q_coef  % Derivative of moments due to 

couple along length 
% Yaw plane parameters 
global zeta_y       % Damping coefficient 
global omgMode_y    % Modal frequency for yaw plane modes 
global q_y          % Coefficients of Mode shapes - 'modesNo' Time dependant scalers 
global dq_y         % Time derivatives of q_y 
global ddq_y        % 2nd time derivatives of q_y 
global F_y          % Force per unit length in Yaw plane = force along Y axis --> 

Function of length 
global M_y          % Moment per unit length in Yaw plane = moment along Z axis --> 

Function of length 
% 
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global F_a          % Force per unit length in axial direction = force along X axis --
> Function of length 

global M_a          % Moment per unit length due to twisting couples = moment along X 
axis --> Function of length 

 
% Discreetization constants 
global dt 
global dl lSteps 
global d_ddq_p 
 
% Runtime variables 
global time 
global Tdata1 Tdata2 
 
% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss rr                % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global KK uu Duu DDuu last_Duu      % Gain Matrix & Inputs for Integral Control 
global MM_full NN_full      % For the full integral system 
global LastEqnNo            % Variable to keep track of the number of equation 

incorporated 
global last_Duu             % Required for Integral control 
 
% System and control types 
global isTimeInvariant      % 1 => time invariant system --> reduces calculations 

considerably 
global isIntegralControl    % 1 => uses Integral control --> for systems involving 

dd_del_p 
global doFull               % 1 => solve the full integral system at a single time 
 
% ================================================================== 
% Global Variables values assignment 
% ================================================================== 
 
airRho = 1.2; 
materialE = 7e10;               % Young's modulus 
materialRho = 2600;             % Density 
%materialE = 2e11;               % Young's modulus 
%materialRho = 7800;             % Density 
L0 = 1;                         % Length 
csA = pi*0.1*0.1/4;             % C.S. area 
mR = .1;                        % Engine mass 
m0 = materialRho*L0*csA + mR;   % total mass 
mM = m0 - mR; 
meu = mM/L0; 
 
Ixx = 2*pi*0.1*0.1*0.1*0.1*mM/csA; 
Iyy = L0*L0*mM/12; 
Izz = Iyy; 
Ixy = 0; 
Iyz = 0; 
Izx = 0; 
xcg = 0;    % Setting origin at the cg 
ycg = 0; 
zcg = 0; 
 
LC = L0/2;  % Distance of the coordinate origin from hind end of the missile 
LR = 0.04;  % Dist between engine cg and the hinge to which the engine is attached 
La = L0 - LC;  % Distance between origine and nose tip of vehicle 
 
I0 = mR*LC*LC; %100;   % engine moment of inertia about origine 
IR = I0 + mR*LR*LR; 
 
%%I_p = 0.5*(Ixx + Iyy - Izz); 
I_p = pi*0.1*0.1*0.1*0.1/16; 
I_y = I_p; %%0.5*(Ixx - Iyy + Izz); 
 
modesNo = 10; 
for n = 1:modesNo, 
    zeta_p(n) = 0.01; 
end 
 
ctrlParmNo = 1;              % del_p is presently the only control parameter 
stateVarNo = 9 + 2*modesNo;  % No of state variables % excluding sloshing 
ExpressionVectorSize = 1 + 3*ctrlParmNo + 15 + 3*modesNo; 
 
dt = 0.0000001; %1e-28;        % will depend max value of omega:  dt << 2*pi/omg_max 
dl = 0.01; 
lSteps = L0 / dl; 
d_ddq_p = 0.000001; 
 
% ================================================================== 
% Global Variables values computation 
% ================================================================== 
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% Finding betaL: Roots of cos(betaL)*cosh(betaL)=1 
% 0th Root: 0 
% 1nd root between 0.5*2pi and 1*2pi 
% 2rd root between 1*2pi and 1.5*2pi 
% 3th root between 1.5*2pi and 2*2pi 
% ... 
% nth root between (n)pi and (n+1)pi 
 
% Calculating for 1st, 2nd and 3rd modes 
for n = 1:3, 
    lowBetaL = n*pi; 
    hiBetaL = (n+1)*pi; 
    lowVal = cos(lowBetaL)*cosh(lowBetaL) - 1; 
    hiVal = cos(hiBetaL)*cosh(hiBetaL) - 1; 
    lowSign = sign(lowVal); 
    hiSign = sign(hiVal); 
    while true, 
        searchBetaL = (lowBetaL*hiVal - hiBetaL*lowVal)/(hiVal-lowVal); 
        searchVal = cos(searchBetaL)*cosh(searchBetaL) - 1; 
        if abs(searchVal) < 1e-10 
            break; 
        end 
        searchSign = sign(searchVal); 
        if searchSign == lowSign 
            lowBetaL = searchBetaL; 
            lowVal = searchVal; 
        else 
            lowBetaL = searchBetaL; 
            hiVal = searchVal; 
        end 
    end 
    beta(n) = searchBetaL/L0; 
    Amode(n) = -(sinh(beta(n)*L0)-sin(beta(n)*L0)); 
    Bmode(n) = (cosh(beta(n)*L0)-cos(beta(n)*L0)); 
    omgMode_p(n) = beta(n)*beta(n)*sqrt((materialE*I_p)/(materialRho*csA)); 
    sprintf('Mode %d: beta=%1.10f , A=%d , B=%d, omg=%d', n, beta(n), Amode(n), 

Bmode(n), omgMode_p(n)), 
end 
% for n th mode with n>3, betaL = (n + 0.5)pi (approx.) 
for n = 4:modesNo, 
    beta(n) = (n + 0.5)*pi/L0; 
    Amode(n) = -(sinh(beta(n)*L0)-sin(beta(n)*L0)); 
    Bmode(n) = (cosh(beta(n)*L0)-cos(beta(n)*L0)); 
    omgMode_p(n) = beta(n)*beta(n)*sqrt((materialE*I_p)/(materialRho*csA)); 
    sprintf('Mode %d: beta=%1.10f , A=%d , B=%d, omg=%d', n, beta(n), Amode(n), 

Bmode(n), omgMode_p(n)), 
end 
 
 
Solve_System.m: 
 
function Solve_System 
%  
global time Tdata1 Tdata2 
global solveTimeSteps 
global dt L0 dl modesNo 
global F_a F_y F_p M_a M_y M_p 
% Global coeficients 
global F_p_ddq_coef F_p_dq_coef F_p_q_coef 
% Angle, Velocity and accleration components --> constants 
global U0 V0 W0 dU0 
global P0 Q0 R0 
% Purturbation Angle, Velocity and accleration components --> Time dependant scalers 
global pAng qAng rAng pAng0 qAng0 rAng0 
global u v w 
global p q r 
global du dv dw 
global dp dq dr 
global del_p d_del_p dd_del_p   % Thrust angle in pitch plane 
global del_y d_del_y dd_del_p   % Thrust angle in yaw plane 
global Tc Ts                    % Thrust values 
global q_p dq_p ddq_p q_y dq_y ddq_y        % Initial shape 
global zeta_p omgMode_p 
global DC_p DC_p_ddq_coef DC_p_dq_coef DC_p_q_coef  % Derivative of moments due to 

couple along length 
% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss rr                % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global KK uu Duu DDuu last_Duu      % Gain Matrix & Inputs for Integral Control 
global LastEqnNo            % Variable to keep track of the number of equation 

incorporated 
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global isTimeInvariant 
 
warning off 
 
isTimeInvariant = 1; 
doFull = 1; 
 
solveTimeSteps = 10000; 
solveTime = solveTimeSteps*dt;      % Time for which solution to be performed 
 
% Initilizing Values 
globals 
U0 = 1000; 
dU0 = 0; 
V0 = 0; 
W0 = 0; 
P0 = 0; 
Q0 = 0; 
R0 = 0; 
pAng0 = 0; 
qAng0 = 0.1; 
rAng0 = 0; 
 
% The global system equation is, 
%           AA * Dss =  BB * ss  +  CC0 * uu  +  CC1 * Duu  +  CC2 * DDuu  +  DD 
% 
%  AA, BB -> stateVarNo x stateVarNo 
%  CC0, CC1, CC2 -> stateVarNo x ctrlParmNo 
%  DD, s -> stateVarNo x 1 
%  u  -> ctrlParmNo x 1 
% 
% where ss is the state vector given by, 
%           ss = [ u v w   DpAng DqAng DrAng   pAng qAng rAng   Dq_p(1) Dq_p(2) ... 

Dq_p(modesNo)   q_p(1) q_p(2) ... q_p(modesNo)]' 
% 
% and uu is the input vector of control parameters given by, 
%           uu = [ cp(1)  cp(2)  ...  cp(ctrlParmNo) ]' 
% 
% Note: D = d/dt 
% 
 
ss = zeros(stateVarNo, 1); 
rr = zeros(stateVarNo, 1); 
ss(9+modesNo+1) = 1e-3; 
 
uu = zeros(ctrlParmNo, 1); 
Duu = zeros(ctrlParmNo, 1); 
DDuu = zeros(ctrlParmNo, 1); 
last_Duu = zeros(ctrlParmNo, 1); 
 
Ts = 1e7; 
Tc = 1e7; 
 
% Initiating loop 
 
 
% Looping 
for time = 0:dt:solveTime, 
 
     
    if isTimeInvariant==0 || time==0 
         
        initiateSysEqn 
         
        % ----------------------------------------------------------------- 
     
         
        % Force Calculation 
        sprintf('Determining Forces .....') 
         
        %force_calculate 
        F_a = zeros(1+round(L0/dl), ExpressionVectorSize); 
        F_p = zeros(1+round(L0/dl), ExpressionVectorSize); 
        F_y = zeros(1+round(L0/dl), ExpressionVectorSize); 
        M_a = zeros(1+round(L0/dl), ExpressionVectorSize); 
        M_p = zeros(1+round(L0/dl), ExpressionVectorSize); 
        M_y = zeros(1+round(L0/dl), ExpressionVectorSize); 
        DC_p = zeros(1+round(L0/dl), ExpressionVectorSize); 
 
        FMthrust;            % Due to Thrust 
        FMinertia;           % Due to engine inertia 
        FMaerodynamic;       % Aerodynamic force 
 %FMgravity; 
        % etc etc 
         
        % ----------------------------------------------------------------- 
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        % Adding equations to system Matrix 
        sprintf('Adding equations due to structural flexibility .....') 
         
        % Add structural equations due to flexibility 
        structuralEqn_p;     % On pitch plane 
         
        % Equations for from net Force and Moment balance 
        OverallForceMomentEqn; 
     
        % ----------------------------------------------------------------- 
         
         
        % Control loop for determining Gain KK 
        sprintf('Determining gain matrix K .....') 
        ControlSystem; 
        % .... 
         
        % ----------------------------------------------------------------- 
         
         
        % Checking the Open & Closed loop system for Stability, controllability, etc 
        % Printing out the summery 
        sprintf('Checking the system ..... \n     Plotting System Poles \n     

Printing system summery .....') 
        SysCheck; 
         
        %  ----------------------------------------------------------------- 
         
    end 
     
    % Original time loop 
    if mod(round(time/dt), 1) == 0 
        sprintf('time = %d :   Determining input u ; Updating state vector s ; Saving 

Time Series Data .....', time) 
    end 
    % Control loop for updating input 
    if doFull ~= 1 
        ControlInput; 
    end 
    % Updates the state vector 
    StateEval; 
 
    % ----------------------------------------------------------------- 
     
    % Outputs: 
     
    % Time Series data storing 
    TimeSeriesProbes(time); 
     
end 
 
TimeSeriesPlots; 
 
 
initiateSysEqn.m: 
 
function initiateSysEqn 
% initiates the System Equations -- defines extra system variables 
% 
% The global system equation is, 
%           AA * Dss =  BB * ss  +  CC0 * uu  +  CC1 * Duu  +  CC2 * DDuu  +  DD 
% 
%  AA, BB -> stateVarNo x stateVarNo 
%  CC0, CC1, CC2 -> stateVarNo x ctrlParmNo 
%  DD, s -> stateVarNo x 1 
%  u  -> ctrlParmNo x 1 
% 
% where ss is the state vector given by, 
%           ss = [ u v w   DpAng DqAng DrAng   pAng qAng rAng   Dq_p(1) Dq_p(2) ... 

Dq_p(modesNo)   q_p(1) q_p(2) ... q_p(modesNo)]' 
% 
% and uu is the input vector of control parameters given by, 
%           uu = [ cp(1)  cp(2)  ...  cp(ctrlParmNo) ]' 
% 
% Note: D = d/dt 
% 
% 
% This function adds the equations 
%           DpAng = dpAng/dt 
%           DqAng = dqAng/dt 
%           DrAng = drAng/dt 
%           Dq_p(i) = dq_p(i)/dt    , i = 1 to modesNo 
% 
 
global modesNo 
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% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss rr                % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global KK                   % Gain Matrix 
global MM_full NN_full      % For the full integral system 
global LastEqnNo            % Variable to keep track of the number of equation 

incorporated 
 
AA = zeros(stateVarNo, stateVarNo); 
BB = zeros(stateVarNo, stateVarNo); 
CC0 = zeros(stateVarNo, ctrlParmNo); 
CC1 = zeros(stateVarNo, ctrlParmNo); 
CC2 = zeros(stateVarNo, ctrlParmNo); 
DD = zeros(stateVarNo, 1); 
KK = zeros(ctrlParmNo, stateVarNo); 
 
LastEqnNo = 0; 
 
% DpAng = dpAng/dt 
% DqAng = dqAng/dt 
% DrAng = drAng/dt 
for a = 1:3, 
    LastEqnNo = LastEqnNo + 1; 
    AA(LastEqnNo, 6+a) = 1; 
    BB(LastEqnNo, 3+a) = 1; 
    CC0(LastEqnNo) = 0; 
    CC1(LastEqnNo) = 0; 
    CC2(LastEqnNo) = 0; 
    DD(LastEqnNo) = 0; 
end 
 
% Dq_p(i) = dq_p(i)/dt    , i = 1 to modesNo 
for a = 1:modesNo, 
    LastEqnNo = LastEqnNo + 1; 
    AA(LastEqnNo, 9+modesNo+a) = 1; 
    BB(LastEqnNo, 9+a) = 1; 
    CC0(LastEqnNo) = 0; 
    CC1(LastEqnNo) = 0; 
    CC2(LastEqnNo) = 0; 
    DD(LastEqnNo) = 0; 
end 
 
 
FMaerodynamic.m: 
 
function FMaerodynamic 
 
global U0 W0 L0 dl airRho La L0 modesNo 
global u q 
global F_p M_p 
global q_p 
global F_p_ddq_coef F_p_dq_coef F_p_q_coef 
% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss                   % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global LastEqnNo            % Variable to keep track of the number of equation 

incorporated 
 
% VV = [ independent_term 
%        DDcp(1) DDcp(2) ... DDcp(ctrlParmNo)    Dcp(1) Dcp(2) ... Dcp(ctrlParmNo)   

cp(1) cp(2) ... cp(ctrlParmNo) 
%        Du Dv Dw    u v w    DDpAng DDqAng DDrAng    DpAng DqAng DrAng    pAng qAng 

rAng 
%        DDq_p(1) DDq_p(2) ... DDq_p(modesNo)   Dq_p(1)  Dq_p(2) ...  Dq_p(modesNo)    

q_p(1)  q_p(2) ...  q_p(modesNo) ] 
% 
 
alpha = atan(W0/U0);    % Angle of attack 
A3 = 0.01;                % Reference area ????? 
 
aeroF = zeros(1+round(L0/dl), ExpressionVectorSize); 
for x = 0:dl:L0, 
    indx = 1+round(x/dl); 
    tmpCnAlpha = CnAlpha(x); 
    aeroF(indx, 1) = aeroF(indx, 1) - 0.5*airRho*U0*U0*alpha*tmpCnAlpha;    % const 

term 
    aeroF(indx, 1+3*ctrlParmNo+11) = aeroF(indx, 1+3*ctrlParmNo+11) - 

0.5*airRho*U0*tmpCnAlpha*(La-L0+x); % q 
    aeroF(indx, 1+3*ctrlParmNo+4) = aeroF(indx, 1+3*ctrlParmNo+4) - 

0.5*airRho*2*U0*alpha*tmpCnAlpha - 0.5*airRho*tmpCnAlpha*(La-L0+x); % u 
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    for m = 1:modesNo, 
        aeroF(indx, 1+3*ctrlParmNo+15+2*modesNo+m) = aeroF(indx, 

1+3*ctrlParmNo+15+2*modesNo+m) - 0.5*airRho*U0*U0*tmpCnAlpha*Dphi_p(m, x); 
        aeroF(indx, 1+3*ctrlParmNo+15+modesNo+m) = aeroF(indx, 

1+3*ctrlParmNo+15+modesNo+m) - 0.5*airRho*U0*tmpCnAlpha*phi_p(m, x); 
    end 
     
    M_p(indx, :) = M_p(indx, :) - aeroF(indx, :)*(La-x); 
end 
 
F_p = F_p + aeroF; 
 
 
CnAlpha.m: 
 
function [CnAlpha] = CnAlpha(l) 
% Pitch plane drag coeff 
% dCn/dAlpha as a function of position along the vehicle, l 
% Note: l = 0 at the tail of the missile 
%       l = L0 at the tip 
 
CnAlpha = 2*pi; 
 
 
FMgravity.m: 
 
function FMgravity 
 
global U0 W0 L0 dl airRho La L0 modesNo 
global u q xcg LC m0 
global F_a F_p M_p 
global q_p 
global F_p_ddq_coef F_p_dq_coef F_p_q_coef 
global pAng0 qAng0 rAng0 
% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss                   % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global LastEqnNo            % Variable to keep track of the number of equation 

incorporated 
 
% VV = [ independent_term 
%        DDcp(1) DDcp(2) ... DDcp(ctrlParmNo)    Dcp(1) Dcp(2) ... Dcp(ctrlParmNo)   

cp(1) cp(2) ... cp(ctrlParmNo) 
%        Du Dv Dw    u v w    DDpAng DDqAng DDrAng    DpAng DqAng DrAng    pAng qAng 

rAng 
%        DDq_p(1) DDq_p(2) ... DDq_p(modesNo)   Dq_p(1)  Dq_p(2) ...  Dq_p(modesNo)    

q_p(1)  q_p(2) ...  q_p(modesNo) ] 
% 
 
indx = 1+round((xcg+LC)/dl); 
F_a(indx, 1+3*ctrlParmNo+14) = F_a(indx, 1+3*ctrlParmNo+14) + m0*9.8*sin(qAng0)/dl; 
F_p(indx, 1+3*ctrlParmNo+14) = F_p(indx, 1+3*ctrlParmNo+14) - m0*9.8*cos(qAng0)/dl; 
M_p(indx, 1+3*ctrlParmNo+14) = M_p(indx, 1+3*ctrlParmNo+14) + m0*(zcg*sin(qAng0) + 

xcg*cos(qAng0)); 
 
 
FMinertia.m: 
 
function FMinertia 
% Adds moments and forces due to engine inertia 
% Presently only for pitch plane 
 
global dl modesNo L0 
global del_p d_del_p dd_del_p   % Thrust angle in pitch plane 
global del_y d_del_y dd_del_p   % Thrust angle in yaw plane 
global Tc Ts                    % Thrust values 
global pAng qAng rAng 
global u v w 
global p q r 
global du dv dw 
global dp dq dr 
global LC                     % Distance of the coordinate origin from hind end of the 

missile 
global LR                     % Dist between engine cg and the hinge to which the 

engine is attached 
global mR                     % Mass of engine 
global I0 IR                  % moment of inertia of engine abt cg and hinge 

respectively 
global U0 dU0 
global F_a F_p M_p DC_p 
% State space formulation 
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global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss                   % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global LastEqnNo            % Variable to keep track of the number of equation 

incorporated 
 
% VV = [ independent_term 
%        DDcp(1) DDcp(2) ... DDcp(ctrlParmNo)    Dcp(1) Dcp(2) ... Dcp(ctrlParmNo)   

cp(1) cp(2) ... cp(ctrlParmNo) 
%        Du Dv Dw    u v w    DDpAng DDqAng DDrAng    DpAng DqAng DrAng    pAng qAng 

rAng 
%        DDq_p(1) DDq_p(2) ... DDq_p(modesNo)   Dq_p(1)  Dq_p(2) ...  Dq_p(modesNo)    

q_p(1)  q_p(2) ...  q_p(modesNo) ] 
% 
 
F_a(1, 1+3*ctrlParmNo+1) = F_a(1, 1+3*ctrlParmNo+1) - mR/dl; 
 
inertiaF = zeros(1+round(L0/dl), ExpressionVectorSize); 
inertiaF(1, 2) = F_p(1, 2) - mR*LR;                                            % 

dd_del_p 
inertiaF(1, 1+3*ctrlParmNo+7) = inertiaF(1, 1+3*ctrlParmNo+7) - mR*(LC+LR);    % dq 
inertiaF(1, 1+3*ctrlParmNo+3) = inertiaF(1, 1+3*ctrlParmNo+3) - mR;            % dw 
for m = 1:modesNo, 
    inertiaF(1, 1+3*ctrlParmNo+15+m) = inertiaF(1, 1+3*ctrlParmNo+15+m) - mR*(phi_p(m, 

0) - LR*Dphi_p(m, 0)); 
end 
F_p = F_p + inertiaF/dl; 
 
inertiaC = zeros(1+round(L0/dl), ExpressionVectorSize); 
inertiaC(1, 1+3*ctrlParmNo+3) = inertiaC(1, 1+3*ctrlParmNo+3) - mR*LR;          % dw 
inertiaC(1, 1+3*ctrlParmNo+7) = inertiaC(1, 1+3*ctrlParmNo+7) - (mR*LR*LC+IR);  % dq 
inertiaC(1, 2) = inertiaC(1, 2) - IR/(dl*dl);                                           

% dd_del_p 
for m = 1:modesNo, 
    inertiaC(1, 1+3*ctrlParmNo+15+m) = inertiaC(1, 1+3*ctrlParmNo+15+m) - 

(mR*LR*phi_p(m, 0) + IR*Dphi_p(m, 0)); 
end 
DC_p = DC_p + inertiaC/(dl*dl); 
 
M_p = M_p - inertiaC/dl + LC*inertiaF/dl; 
 
 
FMthrust.m: 
 
function FMthrust 
% Adds moments and forces due to thrust 
% Presently only for pitch plane 
global dl LC modesNo 
global del_p d_del_p dd_del_p   % Thrust angle in pitch plane 
global del_y d_del_y dd_del_p   % Thrust angle in yaw plane 
global Tc Ts                    % Thrust values 
global F_p M_p DC_p 
% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss                   % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global LastEqnNo            % Variable to keep track of the number of equation 

incorporated 
 
% VV = [ independent_term 
%        DDcp(1) DDcp(2) ... DDcp(ctrlParmNo)    Dcp(1) Dcp(2) ... Dcp(ctrlParmNo)   

cp(1) cp(2) ... cp(ctrlParmNo) 
%        Du Dv Dw    u v w    DDpAng DDqAng DDrAng    DpAng DqAng DrAng    pAng qAng 

rAng 
%        DDq_p(1) DDq_p(2) ... DDq_p(modesNo)   Dq_p(1)  Dq_p(2) ...  Dq_p(modesNo)    

q_p(1)  q_p(2) ...  q_p(modesNo) ] 
% 
 
F_p(1, 1+2*ctrlParmNo+1) = F_p(1, 1+2*ctrlParmNo+1) +  Tc/dl;     % Coeff. of control 

parameter del_p 
for m = 1:modesNo, 
    F_p(1, 16+3*ctrlParmNo+2*modesNo+m) = F_p(1, 16+3*ctrlParmNo+2*modesNo+m) - 

(Tc+Ts)*Dphi_p(m, 0)/dl; 
end 
 
M_p(1, 1+2*ctrlParmNo+1) = M_p(1, 1+2*ctrlParmNo+1) +  LC*Tc/dl;     % Coeff. of 

control parameter del_p 
for m = 1:modesNo, 
    M_p(1, 16+3*ctrlParmNo+2*modesNo+m) = M_p(1, 16+3*ctrlParmNo+2*modesNo+m) - 

LC*(Tc+Ts)*Dphi_p(m, 0)/dl - (Tc+Ts)*phi_p(m, 0)/dl; 
end 
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structuralEqn_p.m: 
 
function structuralEqn_p 
% first order precision 
global L0 dl dt modesNo meu 
global zeta_p       % Damping coefficient 
global omgMode_p    % Modal frequency for pitch plane modes 
global q_p          % Coefficients of Mode shapes - 'modesNo' Time dependant scalers 
global dq_p         % Time derivatives of q_p 
global ddq_p        % 2nd time derivatives of q_p 
global F_p          % Force per unit length in Pitch plane = force along Z axis --> 

Function of length 
global M_p          % Moment per unit length in Pitch plane = moment along Y axis --> 

Function of length 
global DC_p 
% Yaw plane parameters 
global zeta_y       % Damping coefficient 
global omgMode_y    % Modal frequency for yaw plane modes 
global q_y          % Coefficients of Mode shapes - 'modesNo' Time dependant scalers 
global dq_y         % Time derivatives of q_y 
global ddq_y        % 2nd time derivatives of q_y 
global F_y          % Force per unit length in Yaw plane = force along Y axis --> 

Function of length 
global M_y          % Moment per unit length in Yaw plane = moment along Z axis --> 

Function of length 
global time Tdata1 Tdata2 
 
% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss                   % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global LastEqnNo            % Variable to keep track of the number of equation 

incorporated 
 
% VV = [ independent_term 
%        DDcp(1) DDcp(2) ... DDcp(ctrlParmNo)    Dcp(1) Dcp(2) ... Dcp(ctrlParmNo)   

cp(1) cp(2) ... cp(ctrlParmNo) 
%        Du Dv Dw    u v w    DDpAng DDqAng DDrAng    DpAng DqAng DrAng    pAng qAng 

rAng 
%        DDq_p(1) DDq_p(2) ... DDq_p(modesNo)   Dq_p(1)  Dq_p(2) ...  Dq_p(modesNo)    

q_p(1)  q_p(2) ...  q_p(modesNo) ] 
% 
 
for n = 1:modesNo, % looping over n equations 
     
    genM = 0; 
    for m = 1:ExpressionVectorSize, 
        genQ(m) = 0; 
    end 
    for x = 0:dl:L0, 
        tmpPhi = phi_p(n, x); 
        for m = 1:ExpressionVectorSize, 
            genQ(m) = genQ(m) + (F_p(1+round(x/dl), m)- 

DC_p(1+round(x/dl)))*tmpPhi*dl; 
        end 
        genM = genM + meu*tmpPhi*tmpPhi*dl; 
    end 
    genQbyM = genQ/genM; 
 
    thisEqnVector = -genQbyM; 
    thisEqnVector(16+3*ctrlParmNo+n) = thisEqnVector(16+3*ctrlParmNo+n) + 1.0; 
    thisEqnVector(16+3*ctrlParmNo+modesNo+n) = 

thisEqnVector(16+3*ctrlParmNo+modesNo+n) + 2*zeta_p(n)*omgMode_p(n); 
    thisEqnVector(16+3*ctrlParmNo+2*modesNo+n) = 

thisEqnVector(16+3*ctrlParmNo+2*modesNo+n) + omgMode_p(n)*omgMode_p(n); 
 
    generateEquation(thisEqnVector); 
     
end 
 
 
OverallForceMomentEqn.m: 
 
function OverallForceMomentEqn 
% Update the linear and angular acleration terms using the 
% net external Forces and Moments equation 
global dl L0 m0 U0 dU0 dt mM qAng0 Q0 dQ0 
global xcg ycg zcg 
global Ixx Iyy Izz Ixy Iyz Izx 
global pAng qAng rAng 
global u v w 
global p q r 
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global du dv dw 
global dp dq dr 
global F_a F_y F_p M_a M_y M_p  
global modesNo 
 
% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss                   % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global LastEqnNo            % Variable to keep track of the number of equation 

incorporated 
 
% VV = [ independent_term 
%        DDcp(1) DDcp(2) ... DDcp(ctrlParmNo)    Dcp(1) Dcp(2) ... Dcp(ctrlParmNo)   

cp(1) cp(2) ... cp(ctrlParmNo) 
%        Du Dv Dw    u v w    DDpAng DDqAng DDrAng    DpAng DqAng DrAng    pAng qAng 

rAng 
%        DDq_p(1) DDq_p(2) ... DDq_p(modesNo)   Dq_p(1)  Dq_p(2) ...  Dq_p(modesNo)    

q_p(1)  q_p(2) ...  q_p(modesNo) ] 
% 
 
% Calculating overall force and moments from pitch and yaw plane forces and moments. 
for m = 1:ExpressionVectorSize, 
    Fx(m) = 0;  
    Fy(m) = 0; 
    Fz(m) = 0; 
    Mx(m) = 0; 
    My(m) = 0; 
    Mz(m) = 0; 
end 
for x = 0:dl:L0, 
    indx = 1+round(x/dl); 
    for m = 1:ExpressionVectorSize, 
        Fx(m) = Fx(m) + F_a(indx, m)*dl; 
        Fy(m) = Fy(m) + F_y(indx, m)*dl; 
        Fz(m) = Fz(m) + F_p(indx, m)*dl; 
        My(m) = My(m) + M_p(indx, m)*dl; % - F_p(1+x/dl)*(x-LC)*dl; 
        Mz(m) = Mz(m) + M_y(indx, m)*dl; % + F_y(1+x/dl)*(x-LC)*dl; 
        Mx(m) = Mx(m) + M_a(indx, m)*dl; 
    end 
end 
 
% Equations 45 to 50 
 
thisTmpEqn = -Fx; 
thisTmpEqn(1+3*ctrlParmNo+1) = thisTmpEqn(1+3*ctrlParmNo+1) + mM; 
thisTmpEqn(1+3*ctrlParmNo+9) = thisTmpEqn(1+3*ctrlParmNo+9) - mM*ycg; 
thisTmpEqn(1+3*ctrlParmNo+8) = thisTmpEqn(1+3*ctrlParmNo+8) + mM*zcg; 
generateEquation(thisTmpEqn); 
 
thisTmpEqn = -Fy; 
thisTmpEqn(1+3*ctrlParmNo+2) = thisTmpEqn(1+3*ctrlParmNo+2) + mM; 
thisTmpEqn(1+3*ctrlParmNo+12) = thisTmpEqn(1+3*ctrlParmNo+12) + mM*U0; 
thisTmpEqn(1+3*ctrlParmNo+9) = thisTmpEqn(1+3*ctrlParmNo+9) + mM*xcg; 
thisTmpEqn(1+3*ctrlParmNo+7) = thisTmpEqn(1+3*ctrlParmNo+7) - mM*zcg; 
generateEquation(thisTmpEqn); 
 
thisTmpEqn = -Fz; 
thisTmpEqn(1+3*ctrlParmNo+3) = thisTmpEqn(1+3*ctrlParmNo+3) + mM; 
thisTmpEqn(1+3*ctrlParmNo+11) = thisTmpEqn(1+3*ctrlParmNo+11) - mM*U0; 
thisTmpEqn(1+3*ctrlParmNo+8) = thisTmpEqn(1+3*ctrlParmNo+8) - mM*xcg; 
thisTmpEqn(1+3*ctrlParmNo+7) = thisTmpEqn(1+3*ctrlParmNo+7) + mM*ycg; 
generateEquation(thisTmpEqn); 
 
thisTmpEqn = -Mx; 
thisTmpEqn(1+3*ctrlParmNo+7) = thisTmpEqn(1+3*ctrlParmNo+7) + Ixx; 
thisTmpEqn(1+3*ctrlParmNo+8) = thisTmpEqn(1+3*ctrlParmNo+8) - Ixy; 
thisTmpEqn(1+3*ctrlParmNo+9) = thisTmpEqn(1+3*ctrlParmNo+9) - Izx; 
thisTmpEqn(1+3*ctrlParmNo+11) = thisTmpEqn(1+3*ctrlParmNo+11) - U0*mM*ycg; 
thisTmpEqn(1+3*ctrlParmNo+12) = thisTmpEqn(1+3*ctrlParmNo+12) - U0*mM*zcg; 
thisTmpEqn(1+3*ctrlParmNo+2) = thisTmpEqn(1+3*ctrlParmNo+2) - mM*zcg; 
thisTmpEqn(1+3*ctrlParmNo+3) = thisTmpEqn(1+3*ctrlParmNo+3) + mM*ycg; 
generateEquation(thisTmpEqn); 
 
thisTmpEqn = -My; 
thisTmpEqn(1+3*ctrlParmNo+7) = thisTmpEqn(1+3*ctrlParmNo+7) - Ixy; 
thisTmpEqn(1+3*ctrlParmNo+8) = thisTmpEqn(1+3*ctrlParmNo+8) + Iyy; 
thisTmpEqn(1+3*ctrlParmNo+9) = thisTmpEqn(1+3*ctrlParmNo+9) - Iyz; 
thisTmpEqn(1+3*ctrlParmNo+11) = thisTmpEqn(1+3*ctrlParmNo+11) + U0*mM*xcg; 
thisTmpEqn(1+3*ctrlParmNo+1) = thisTmpEqn(1+3*ctrlParmNo+1) + mM*zcg; 
thisTmpEqn(1+3*ctrlParmNo+3) = thisTmpEqn(1+3*ctrlParmNo+3) + mM*xcg; 
generateEquation(thisTmpEqn); 
 
thisTmpEqn = -My; 
thisTmpEqn(1+3*ctrlParmNo+7) = thisTmpEqn(1+3*ctrlParmNo+7) - Izx; 
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thisTmpEqn(1+3*ctrlParmNo+8) = thisTmpEqn(1+3*ctrlParmNo+8) - Iyz; 
thisTmpEqn(1+3*ctrlParmNo+9) = thisTmpEqn(1+3*ctrlParmNo+9) + Izz; 
thisTmpEqn(1+3*ctrlParmNo+12) = thisTmpEqn(1+3*ctrlParmNo+12) + U0*mM*xcg; 
thisTmpEqn(1+3*ctrlParmNo+1) = thisTmpEqn(1+3*ctrlParmNo+1) - mM*ycg; 
thisTmpEqn(1+3*ctrlParmNo+2) = thisTmpEqn(1+3*ctrlParmNo+2) + mM*xcg; 
generateEquation(thisTmpEqn); 
 
 
SysCheck.m: 
 
function SysCheck 
% 
% The global system equation is, 
%           AA * Dss =  BB * ss  +  CC0 * uu  +  CC1 * Duu  +  CC2 * DDuu  +  DD 
% 
%  AA, BB -> stateVarNo x stateVarNo 
%  CC0, CC1, CC2 -> stateVarNo x ctrlParmNo 
%  DD, s -> stateVarNo x 1 
%  u  -> ctrlParmNo x 1 
% 
% where ss is the state vector given by, 
%           ss = [ u v w   DpAng DqAng DrAng   pAng qAng rAng   Dq_p(1) Dq_p(2) ... 

Dq_p(modesNo)   q_p(1) q_p(2) ... q_p(modesNo)]' 
% 
% and uu is the input vector of control parameters given by, 
%           uu = [ cp(1)  cp(2)  ...  cp(ctrlParmNo) ]' 
% 
% Note: D = d/dt 
% 
 
global modesNo 
% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss                   % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global MM_full NN_full      % For the full integral system 
global LastEqnNo            % Variable to keep track of the number of equation 

incorporated 
global uu last_uu last2last_uu Duu DDuu KK  % Control loop parameters & inputs 
 
 
sprintf('System properties: \n     System equation: A*d(ss) = B*ss + C0*uu + C1*d(uu) 

+ C2*dd(uu) + D \n     Integral Control: d(uu) = K*ss \n     [Note: d = d/dt]') 
 
 
sprintf('Poles of Open Loop system \n i.e. Eigenvalues of inv(A)*B .....') 
Rmat = inv(AA)*BB; 
eigenVals = eig(Rmat); 
eigenVals, 
hold on; 
figure; 
plot(eigenVals, '.'); 
title('Poles of Open Loop system'); 
hold off; 
 
sprintf('Poles of Closed Loop system with Integral Control ..... \n i.e. Eigenvalues 

of \n         --                                                             --
\n        ||                                |                              ||\n        
|| inv(A-C2*K)*(B+C1*K) - lamb*I  |     inv(A-C2*K)*C0*K         ||\n        ||                   
|                              ||\n        ||--------------------------------|-
-----------------------------||      \n        ||                                
|                              ||\n        ||             I                  |           
-lamb*I            ||\n        ||                                |                              
||\n         --                                                             -- 
.....') 

sprintf('With zero gain .....') 
zero_KK = zeros(ctrlParmNo, stateVarNo); 
this_KK = zero_KK; 
tmpMat = inv(AA-CC2*this_KK); 
MM11 = tmpMat*(BB+CC1*this_KK); 
MM12 = tmpMat*CC0*this_KK; 
MM21 = eye(stateVarNo); 
MM22 = zeros(stateVarNo); 
MM = [ MM11 MM12 ; MM21 MM22 ]; 
eigenVals = eig(MM); 
eigenVals, 
hold on; 
figure; 
plot(eigenVals, '.'); 
title('Poles of Closed Loop system with zero gain'); 
hold off; 
 
if KK == zero_KK 
    sprintf('Gain determined to stabilize Integral feedback loop is ZERO!!!!!') 
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else 
    sprintf('With gain determined to stabilize Integral feedback loop =') 
    KK, 
    eigenVals = eig(MM_full); 
    eigenVals, 
    hold on; 
    figure; 
    plot(eigenVals, '.'); 
    title('Poles of Closed Loop system with gain determined to stabilize Integral 

feedback loop'); 
    hold off; 
end 
 
 
% Saving the system Matrices 
save 'last_run_system.mat' AA BB CC0 CC1 CC2 DD KK 
 
pause; 
 
 
ControlSystem.m: 
 
function ControlSystem 
 
% The global system equation is, 
%           AA * Dss =  BB * ss  +  CC0 * uu  +  CC1 * Duu  +  CC2 * DDuu  +  DD 
% 
%  AA, BB -> stateVarNo x stateVarNo 
%  CC0, CC1, CC2 -> stateVarNo x ctrlParmNo 
%  DD, s -> stateVarNo x 1 
%  u  -> ctrlParmNo x 1 
% 
% where ss is the state vector given by, 
%           ss = [ u v w   DpAng DqAng DrAng   pAng qAng rAng   Dq_p(1) Dq_p(2) ... 

Dq_p(modesNo)   q_p(1) q_p(2) ... q_p(modesNo)]' 
% 
% and uu is the input vector of control parameters given by, 
%           uu = [ cp(1)  cp(2)  ...  cp(ctrlParmNo) ]' 
% 
% Note: D = d/dt 
% 
 
% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss                   % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global KK                   % Gain Matrix 
global MM_full NN_full      % For the full integral system 
global LastEqnNo            % Variable to keep track of the number of equation 

incorporated 
 
global eigVals1 
 
Rmat = inv(AA)*BB; 
eigVals = eig(Rmat); 
ord=.1; 
thePoles = eig(inv(AA)*BB)*5 + (-(0.7+0.3*rand(stateVarNo, 1))*2 + 

(10*rand(stateVarNo, 1))*i)*ord; 
sprintf('Placing poles of the system for Integral Control ..... \n  Determining K by 

Newton-Raphson iteration ....') 
PolePlaceIgame; 
%KK(2) = 9.600621147974315e+024; 
 
tmpMat = inv(AA-CC2*KK); 
MM11 = tmpMat*(BB+CC1*KK); 
MM12 = tmpMat*CC0*KK; 
MM21 = eye(stateVarNo); 
MM22 = zeros(stateVarNo); 
MM_full = [ MM11 MM12 ; MM21 MM22 ];    % / (0.5e100/stateVarNo); 
 
NN1 = tmpMat*DD; 
NN2 = zeros(stateVarNo, 1); 
NN_full = [ NN1 ; NN2 ]; 
 
 
ControlInput.m: 
 
function ControlInput 
 
% The global system equation is, 
%           AA * Dss =  BB * ss  +  CC0 * uu  +  CC1 * Duu  +  CC2 * DDuu  +  DD 
% 
%  AA, BB -> stateVarNo x stateVarNo 
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%  CC0, CC1, CC2 -> stateVarNo x ctrlParmNo 
%  DD, s -> stateVarNo x 1 
%  u  -> ctrlParmNo x 1 
% 
% where ss is the state vector given by, 
%           ss = [ u v w   DpAng DqAng DrAng   pAng qAng rAng   Dq_p(1) Dq_p(2) ... 

Dq_p(modesNo)   q_p(1) q_p(2) ... q_p(modesNo)]' 
% 
% and uu is the input vector of control parameters given by, 
%           uu = [ cp(1)  cp(2)  ...  cp(ctrlParmNo) ]' 
% 
% Note: D = d/dt 
% 
 
global dt 
% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss                   % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global KK uu Duu DDuu last_Duu      % Gain Matrix & Inputs for Integral Control 
global LastEqnNo            % Variable to keep track of the number of equation 

incorporated 
 
% -+- Generating UU -+- 
% Integral control 
last_Duu = Duu; 
Duu = KK*ss; 
uu = uu + Duu*dt; 
DDuu = (Duu - last_Duu)/dt; 
 
 
phi_p.m: 
 
function [phi_p] = phi_p(n, x) 
% Returns the displacement of n th mode shape at position x 
global beta Amode Bmode 
 
betaX = beta(n)*x; 
phi_p = Amode(n)*(cosh(betaX) + cos(betaX)) + Bmode(n)*(sinh(betaX) + sin(betaX)); 
 
 
Dphi_p.m: 
 
function [Dphi_p] = Dphi_p(n, x) 
% Returns the slope of n th mode shape at position x 
global beta Amode Bmode 
 
betaX = beta(n)*x; 
Dphi_p = beta(n) * (Amode(n)*(sinh(betaX) - sin(betaX)) + Bmode(n)*(cosh(betaX) + 

cos(betaX))); 
 
 
generateEquation.m: 
 
function generateEquation(eqnVector) 
% adds an equation to the global state-space matrices 
%  
% the equation is, 
%           dot(eqnVector, VV) = 0 
% where, 
% VV = [ independent_term 
%        DDcp(1) DDcp(2) ... DDcp(ctrlParmNo)    Dcp(1) Dcp(2) ... Dcp(ctrlParmNo)   

cp(1) cp(2) ... cp(ctrlParmNo) 
%        Du Dv Dw    u v w    DDpAng DDqAng DDrAng    DpAng DqAng DrAng    pAng qAng 

rAng 
%        DDq_p(1) DDq_p(2) ... DDq_p(modesNo)   Dq_p(1)  Dq_p(2) ...  Dq_p(modesNo)    

q_p(1)  q_p(2) ...  q_p(modesNo) ] 
% 
% The global system equation is, 
%           AA * Dss =  BB * ss  +  CC0 * uu  +  CC1 * Duu  +  CC2 * DDuu  +  DD 
% 
%  AA, BB -> stateVarNo x stateVarNo 
%  CC0, CC1, CC2 -> stateVarNo x ctrlParmNo 
%  DD, s -> stateVarNo x 1 
%  u  -> ctrlParmNo x 1 
% 
% where ss is the state vector given by, 
%           ss = [ u v w   DpAng DqAng DrAng   pAng qAng rAng   Dq_p(1) Dq_p(2) ... 

Dq_p(modesNo)   q_p(1) q_p(2) ... q_p(modesNo)]' 
% 
% and uu is the input vector of control parameters given by, 
%           uu = [ cp(1)  cp(2)  ...  cp(ctrlParmNo) ]' 

 58



% 
% Note: D = d/dt 
% 
 
global modesNo 
% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss                   % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global LastEqnNo            % Variable to keep track of the number of equation 

incorporated 
 
LastEqnNo = LastEqnNo + 1; 
 
% u v w 
for a = 1:3, 
    AA(LastEqnNo, a) = eqnVector(1+3*ctrlParmNo+a); 
    BB(LastEqnNo, a) = -eqnVector(4+3*ctrlParmNo+a); 
end 
 
% pAng qAng rAng 
for a = 1:3, 
    AA(LastEqnNo, 3+a) = eqnVector(7+3*ctrlParmNo+a); 
end 
for a = 1:6, 
    BB(LastEqnNo, 3+a) = -eqnVector(10+3*ctrlParmNo+a); 
end 
 
% q_p(i), i = 1 to modesNo 
for a = 1:modesNo, 
    AA(LastEqnNo, 9+a) = eqnVector(16+3*ctrlParmNo+a); 
end 
for a = 1:2*modesNo, 
    BB(LastEqnNo, 9+a) = -eqnVector(16+3*ctrlParmNo+modesNo+a); 
end 
 
% Control parameters 
for a = 1:ctrlParmNo, 
    CC0(LastEqnNo) = -eqnVector(1+2*ctrlParmNo+a); 
    CC1(LastEqnNo) = -eqnVector(1+ctrlParmNo+a); 
    CC2(LastEqnNo) = -eqnVector(1+a); 
end 
% const term 
DD(LastEqnNo) = -eqnVector(1); 
 
 
% Normalizing 
AAfactor = max(abs(AA(LastEqnNo,:))); 
AA(LastEqnNo,:) = AA(LastEqnNo,:) / AAfactor; 
BB(LastEqnNo,:) = BB(LastEqnNo,:) / AAfactor; 
CC0(LastEqnNo,:) = CC0(LastEqnNo,:) / AAfactor; 
CC1(LastEqnNo,:) = CC1(LastEqnNo,:) / AAfactor; 
CC2(LastEqnNo,:) = CC2(LastEqnNo,:) / AAfactor; 
DD(LastEqnNo,:) = DD(LastEqnNo,:) / AAfactor; 
 
 
PolePlaceIgame.m: 
 
function PolePlaceIgame 
 
% 
% Places the poles for Integral feedback control on the left of imaginary axis using 

genetic algorithm 
% 
% Integral control => 
%           uu = KK * Integration[ss * dt] 
% 
% Can be used when C2 is not zero. 
% 
% -------------------------------------------------------------------- 
% Given the position of the poles, 'lamb', in the cplx plane, determines the gain 

matrix K 
% K = [k1 k2 k3 ... kn] 
% 
% The equation to be satisfied is, 
% 
%         --                                                             -- 
%        ||                                |                              || 
%        || inv(A-C2*K)*(B+C1*K) - lamb*I  |     inv(A-C2*K)*C0*K         || 
%        ||                                |                              || 
%    det ||--------------------------------|------------------------------||  =  0 
%        ||                                |                              || 
%        ||             I                  |           -lamb*I            || 
%        ||                                |                              || 
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%         --                                                             -- 
% 
% There are 2n poles (i.e. 2n 'lamb's), which gives 2n equations. 
% But if we assume that A, B, C0, C1, C2 and K have only real elements, 
% 'lamb' will consist of complex conjugates. 
% Hence, lamb has n elements. 
% where n = stateVarNo 
 
% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss                   % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global KK                   % Gain Matrix 
 
tmp_KK = zeros(1, stateVarNo); 
 
maxIter=1000; 
for a=1:maxIter, 
    isThisKKok = isThisKKokay(tmp_KK); 
    if isThisKKok==1 
        break; 
    elseif isThisKKok==-1 
        sprintf('WARNING!! Divergence in iteration no.: %d -- Scaling K by 1e-10!!', 

a) 
        tmp_KK = tmp_KK * 1e-10; 
    end 
 
    % Finding best scores and corrosponding changes of the present set of K 
    KK_score = zeros(1, stateVarNo); 
    delta_KK = zeros(1, stateVarNo); 
    for b=1:stateVarNo, 
        [delta, score] = findBestDelta3(tmp_KK, b); 
        KK_score(b) = score; 
        delta_KK(b) = delta; 
        sprintf('turn number=%d , K index=%d : score=%d , delta=%d', a, b, score, 

delta) 
    end 
         
    [max_score, winner_index] = max(KK_score); 
    tmp_KK(winner_index) = tmp_KK(winner_index) + delta_KK(winner_index); 
     
    sprintf('No solution till turn number %d :  Last winner score = %d', a, max_score) 
end 
 
 
if a==maxIter 
    sprintf('WARNING: No solution for KK found!!!') 
else 
    sprintf('*** Solution in turn number %d', a) 
    KK = tmp_KK; 
end 
 
 
% ---------------------------- 
%       End of Function 
% ============================ 
 
 
 
function [g]=g(this_KK) 
 
% 
% given a particular K and lamb, this function calculates the vector g 
% 
% 
%               --                                              -- 
%              ||                        |                       || 
%              || inv(A-C2*K)*(B+C1*K)   |     inv(A-C2*K)*C0*K  || 
%              ||                        |                       || 
%    g =   eig ||------------------------|-----------------------|| 
%              ||                        |                       || 
%              ||             I          |         0             || 
%              ||                        |                       || 
%               --                                              -- 
% 
 
 
% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss                   % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global KK                   % Gain Matrix 
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global LastEqnNo            % Variable to keep track of the number of equation 
incorporated 

global lamb 
 
 
%for n = 1:stateVarNo, 
    tmpMat = inv(AA-CC2*this_KK); 
    MM11 = tmpMat*(BB+CC1*this_KK); 
    MM12 = tmpMat*CC0*this_KK; 
    MM21 = eye(stateVarNo); 
    MM22 = zeros(stateVarNo); 
    MM = [ MM11 MM12 ; MM21 MM22 ];    % / (0.5e100/stateVarNo); 
    eigenVals = eig(MM); 
    g = sort(real(eigenVals)); 
 
 
 
% ---------------------------- 
%       End of Function 
% ============================ 
 
 
function  [delta, score] = findBestDelta3(this_KK, Kindex) 
% search for highest score by multiple partition search 
 
no_of_points = 1000; 
delta_max = 1e25; 
delta_min = -1e25; 
delta_gap = (delta_max-delta_min)/(no_of_points+1); 
 
delta_points = delta_min:delta_gap:delta_max; 
 
for a=1:6, 
    for b=1:no_of_points, 
        score_points(b) = getScore(this_KK, Kindex, delta_points(b)); 
    end 
    [max_score, max_index] = max(score_points); 
    the_best_delta = delta_points(max_index); 
    delta_max = the_best_delta+delta_gap; 
    delta_min = the_best_delta-delta_gap; 
    delta_gap = 2*delta_gap/(no_of_points+1); 
    delta_points = delta_min:delta_gap:delta_max; 
end 
 
delta = the_best_delta; 
score = getScore(this_KK, Kindex, delta); 
 
% ---------------------------- 
%       End of Function 
% ============================ 
 
 
function [score] = getScore(this_KK, Kindex, delta) 
global stateVarNo 
 
% Parameters in calculating the score 
gain_in_positive = 1e-3; 
gain_in_negetive = 0.5*1e-3; 
gain_in_cross = 1; 
% ----------------------------------- 
 
tempKK = this_KK; 
old_g = g(tempKK); 
tempKK(Kindex) = tempKK(Kindex) + delta; 
new_g = g(tempKK); 
delta_g = old_g - new_g; 
gain_in_cross = gain_in_cross*max(abs(delta_g)); 
 
score=0; 
for a=1:2*stateVarNo, 
    old_sign = sign(old_g(a)); 
    new_sign = sign(new_g(a)); 
    if old_sign ~= new_sign 
        if old_sign == 1 
            score = score + gain_in_cross; 
        elseif new_sign == 1 
            score = score - gain_in_cross; 
        end 
    end 
    if new_sign == 1 
        score = score + gain_in_positive*delta_g(a); 
    else 
        score = score + gain_in_negetive*delta_g(a); 
    end 
end 
 
score = score / gain_in_cross; 
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% ---------------------------- 
%       End of Function 
% ============================ 
 
 
 
 
function isThisKKokay = isThisKKokay(this_KK) 
 
% 
% given a particular K and lamb, this function calculates the vector g 
% 
% 
%               --                                              -- 
%              ||                        |                       || 
%              || inv(A-C2*K)*(B+C1*K)   |     inv(A-C2*K)*C0*K  || 
%              ||                        |                       || 
%    g =   eig ||------------------------|-----------------------|| 
%              ||                        |                       || 
%              ||             I          |         0             || 
%              ||                        |                       || 
%               --                                              -- 
% 
 
 
% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss                   % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global KK                   % Gain Matrix 
global LastEqnNo            % Variable to keep track of the number of equation 

incorporated 
global lamb 
 
 
%for n = 1:stateVarNo, 
    tmpMat = inv(AA-CC2*this_KK); 
    MM11 = tmpMat*(BB+CC1*this_KK); 
    MM12 = tmpMat*CC0*this_KK; 
    MM21 = eye(stateVarNo); 
    MM22 = zeros(stateVarNo); 
    MM = [ MM11 MM12 ; MM21 MM22 ];    % / (0.5e100/stateVarNo); 
    try 
        eigenVals = eig(MM); 
    catch 
        isThisKKokay = -1; 
        return; 
    end 
     
    isThisKKokay = 1; 
    for n = 1:2*stateVarNo, 
        if real(eigenVals(n)) > 0 
            isThisKKokay = 0; 
        end 
    end 
 
% ---------------------------- 
%       End of Function 
% ============================ 
 
 
StateEval.m: 
 
function StateEval 
% Evaluates the state vector 
 
% The global system equation is, 
%           AA * Dss =  BB * ss  +  CC0 * uu  +  CC1 * Duu  +  CC2 * DDuu  +  DD 
% 
%  AA, BB -> stateVarNo x stateVarNo 
%  CC0, CC1, CC2 -> stateVarNo x ctrlParmNo 
%  DD, s -> stateVarNo x 1 
%  u  -> ctrlParmNo x 1 
% 
% where ss is the state vector given by, 
%           ss = [ u v w   DpAng DqAng DrAng   pAng qAng rAng   Dq_p(1) Dq_p(2) ... 

Dq_p(modesNo)   q_p(1) q_p(2) ... q_p(modesNo)]' 
% 
% and uu is the input vector of control parameters given by, 
%           uu = [ cp(1)  cp(2)  ...  cp(ctrlParmNo) ]' 
% 
% Note: D = d/dt 
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% 
 
global dt doFull 
% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss rr                % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global KK 
global MM_full NN_full      % For the full integral system 
global LastEqnNo            % Variable to keep track of the number of equation 

incorporated 
global del_p d_del_p dd_del_p   % Thrust angle in pitch plane 
global uu last_uu last2last_uu Duu DDuu KK  % Control loop parameters & inputs 
 
 
% Updating state vector 
if doFull ~= 1 
    AAinv = inv(AA); 
    ss = ss  +  dt * AAinv*(BB*ss + CC0*uu + CC1*Duu + CC2*DDuu + DD); 
else 
    ss_rr = [ ss ; rr ]; 
    sub_steps = 1000; 
    sub_dt = dt/sub_steps; 
    for a=1:sub_steps, 
        ss_rr = ss_rr  +  sub_dt * (MM_full*ss_rr + NN_full); 
    end 
    ss = ss_rr(1:stateVarNo); 
    rr = ss_rr(1+stateVarNo:2*stateVarNo); 
end 
 
 
shapeDisp_p.m: 
 
function [shapeDisp_p] = shapeDisp_p(l) 
% Returns the current shape displacement in pitch plane at position l 
% 
% ss, the state vector given by, 
%       ss = [ u v w   DpAng DqAng DrAng   pAng qAng rAng   Dq_p(1) Dq_p(2) ... 

Dq_p(modesNo)   q_p(1) q_p(2) ... q_p(modesNo)]' 
 
global q_p modesNo 
global ss 
 
shapeDisp_p = 0; 
for n = 1:modesNo, 
    shapeDisp_p = shapeDisp_p + ss(9+modesNo+n)*phi_p(n, l); 
end 
 
 
TimeSeriesProbes.m: 
 
function TimeSeriesProbes(this_time) 
 
% Data for Missile shape 
    global Data1TimePointsNo 
    global title1 
    global TData1 
    global TVariable1 
% Data for Displacement of hind end of missile 
    global Data2TimePointsNo 
    global title2 
    global TData2 
    global TVariable2 
 
% Global data for including in time series data 
global dt L0 solveTimeSteps ss U0 
 
%--------------------------------------- 
timeIndex = round(this_time/dt) + 1; 
%--------------------------------------- 
 
% Shape of the Missile 
Data1TimePointsNo = 10;                                         % Change 
TimeStepInterval = round(solveTimeSteps/Data1TimePointsNo);     % Change 
if mod(timeIndex, TimeStepInterval) == 0 
    dataIndex = round(timeIndex/TimeStepInterval); 
    title1 = 'Shape of the missile at different time instants'; % Change 
    TVariable1 = (0:L0/100:L0);                                 % Change 
    TData1(dataIndex, :) = shapeDisp_p(TVariable1);             % Change 
end 
 
% Displacement of hind end of missile 
Data2TimePointsNo = 1000; 
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TimeStepInterval = round(solveTimeSteps/Data2TimePointsNo); 
if mod(timeIndex, TimeStepInterval) == 0 
    dataIndex = round(timeIndex/TimeStepInterval); 
    title2 = 'Displacement at different positions with time'; 
    TVariable2(dataIndex) = this_time; 
    TData2(1, dataIndex) = shapeDisp_p(L0); 
    TData2(2, dataIndex) = shapeDisp_p(L0/2); 
    TData2(3, dataIndex) = shapeDisp_p(0); 
    %shapeDisp_p(0), 
end 
 
 
TimeSeriesPlots.m: 
 
function TimeSeriesPlots 
 
% Data for Missile shape 
    global title1 
    global TData1 
    global TVariable1 
% Data for Displacement of hind end of missile 
    global title2 
    global TData2 
    global TVariable2 
 
hold on; 
figure; 
plot(TVariable1, TData1); 
title(title1); 
hold off; 
 
hold on; 
figure; 
size(TData2), 
plot(TVariable2, TData2(1,:), 'r-', TVariable2, TData2(2,:), 'b:', TVariable2, 

TData2(3,:), 'k-.'); 
title(title2); 
legend('at x=L0','at x=L0/2','at x=0'); 
hold off; 
 
 
% Saving the outputs 
save 'last_run_outputs.mat' TData1 TVariable1 TData2 TVariable2 
 
 
RootLocusPlot.m: 
 
function RootLocusPlot 
 
%  
global time Tdata1 Tdata2 
global solveTimeSteps 
global dt L0 dl modesNo 
global F_a F_y F_p M_a M_y M_p 
% Global coeficients 
global F_p_ddq_coef F_p_dq_coef F_p_q_coef 
% Angle, Velocity and accleration components --> constants 
global U0 V0 W0 dU0 
global P0 Q0 R0 
% Purturbation Angle, Velocity and accleration components --> Time dependant scalers 
global pAng qAng rAng pAng0 qAng0 rAng0 
global u v w 
global p q r 
global du dv dw 
global dp dq dr 
global del_p d_del_p dd_del_p   % Thrust angle in pitch plane 
global del_y d_del_y dd_del_p   % Thrust angle in yaw plane 
global Tc Ts                    % Thrust values 
global q_p dq_p ddq_p q_y dq_y ddq_y        % Initial shape 
global zeta_p omgMode_p 
global DC_p DC_p_ddq_coef DC_p_dq_coef DC_p_q_coef  % Derivative of moments due to 

couple along length 
% State space formulation 
global stateVarNo           % No of state variables 
global ctrlParmNo           % No of control parameters 
global ExpressionVectorSize % No of elements in an 'expression vector' 
global ss rr                % State vector 
global AA BB CC0 CC1 CC2 DD % System equation matrices 
global KK uu Duu DDuu last_Duu      % Gain Matrix & Inputs for Integral Control 
global LastEqnNo            % Variable to keep track of the number of equation 

incorporated 
 
global isTimeInvariant 
 
warning off 
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% Initilizing Values 
globals 
dU0 = 0; 
V0 = 0; 
W0 = 0; 
P0 = 0; 
Q0 = 0; 
R0 = 0; 
pAng0 = 0; 
qAng0 = 0.1; 
rAng0 = 0; 
 
Ts = 1e7; 
U0 = 1000; 
for Tc = 1e6:1e6:2e8, 
        initiateSysEqn 
         
        % ----------------------------------------------------------------- 
     
        Tc, 
        % Force Calculation 
        F_a = zeros(1+round(L0/dl), ExpressionVectorSize); 
        F_p = zeros(1+round(L0/dl), ExpressionVectorSize); 
        F_y = zeros(1+round(L0/dl), ExpressionVectorSize); 
        M_a = zeros(1+round(L0/dl), ExpressionVectorSize); 
        M_p = zeros(1+round(L0/dl), ExpressionVectorSize); 
        M_y = zeros(1+round(L0/dl), ExpressionVectorSize); 
        DC_p = zeros(1+round(L0/dl), ExpressionVectorSize); 
 
        FMthrust;            % Due to Thrust 
        FMinertia;           % Due to engine inertia 
        FMaerodynamic;       % Aerodynamic force 
        % FMgravity 
        % etc etc 
         
        % ----------------------------------------------------------------- 
 
         
        % Add structural equations due to flexibility 
        structuralEqn_p;     % On pitch plane 
         
        % Equations for from net Force and Moment balance 
        OverallForceMomentEqn; 
     
        % ----------------------------------------------------------------- 
        eigArray(U0/100, :) = (eig(inv(AA)*BB))'; 
         
end 
 
figure; 
plot(eigArray, 'b'); 
title('Locus of poles of Open loop system with variation of Tc from 10^6 to 2*10^8'); 
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Appendix – II 
 

Mathematica code for numerically solving the Orr-Sommerfeld equation using 
Galerkin’s Method 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

detM=Det[m]  

ReplaceAll[detM,{R→1,α→1}]  

Solve[ReplaceAll[detM,{R→1000,α→.4}]==0,c]  

ContourPlot[Im[ReplaceAll[c,Solve[ReplaceAll[detM,{R→x,α→y}]==
0,c][[1]]]],{x,.1,1000},{y,.001,1}];  
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Created by Mathematica  (May 5, 2006) 
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Appendix – III 
 

Matlab code for numerically solving the Orr-Sommerfeld equation using 
‘Automated search of eigenvalues’ 
 
Following M-files were implemented in Matlab for finding the ci = 0 contour in the α-
R plane. The function ‘zero_contour_search’ is the entry point to the code. 
 
 
globals.m: 
 
function globals 
 
global dy dyNos staGap 
 
global phi0     % First Integration Pass Solution 
global phi0_p phi0_pp phi0_ppp    % Values from First Integration Pass stored at 
stations 
global phi0_wall phi0_p_wall phi0_pp_wall phi0_ppp_wall  % Values from First 
Integration Pass stored at the wall 
global A4_0     % Initial A4 value chosen for First Integration Pass 
 
global phiW     % Second Integration Pass Solution 
global phiW_wall phiW_p_wall phiW_pp_wall phiW_ppp_wall  % Values from First 
Integration Pass stored at the wall 
global A2_W     % Initial A2 value chosen for Second Integration Pass 
 
global tanh1 
 
dy = .001;      % dy for Runge-Kutta method and U, U_pp 
dyNos = 1/dy;   % Number of dy s over which the integration is done 
staGap = 20;    % Number of dy gaps between two stations 
staNos = dyNos/staGap;  % Number of Stations 
 
A4_0 = 1e9;%1e32; 
A2_W = 1;%1e-18; 
 
tanh1 = tanh(1.0); 
 
 
U.m: 
 
function [U] = U(y) 
 
global dyNos tanh1 
 
if y > 1 
    U = 1; 
else 
    discreetY = y; 
    U = tanh(discreetY)/tanh1; 
End 
 
 
U_pp.m: 
 
function [U_pp] = U_pp(y) 
 
global dyNos tanh1 
 
if y > 1 
    U_pp = 0; 
else 
    %discreetY = fix(dyNos * y) / dyNos; 
    discreetY = y; 
    sechY = sech(discreetY); 
    U_pp = -2 * (sechY.* sechY.* tanh(discreetY)) / tanh1; 
end 
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zero_contour_search.m: 
 
function zero_contour_search 
 
format compact 
sprintf('*********************************************\n'), 
 
Rmin = 1; 
Rmax = 8000; 
alphaMin = .01; 
alphaMax = 2.5; 
 
ptNo = 1; 
while ptNo <= 20, 
    sprintf('New search point! \nPoint no: %d\n',ptNo), 
     
    lambda = 1; 
    dR = 10; 
    dalpha = .01; 
     
    R = Rmin + (Rmax-Rmin)*rand; 
    alpha = alphaMin + (alphaMax-alphaMin)*rand; 
     
    isConverge = 1; 
    lastg = 1; 
    iterNo = 0; 
    while abs(lastg) > 1e-5, 
        g = lambda * imag(search_c(R, alpha)); 
         
        g_R = lambda * imag(search_c(R+dR, alpha)); 
        g_alpha = lambda * imag(search_c(R, alpha+dalpha)); 
     
        dg_dR = (g_R - g)/dR; 
        dg_dalpha = (g_alpha - g)/dalpha; 
     
        if abs(dg_dR) < 1e-3 & abs(dg_dalpha) < 1e-3      %Flat g-surface  
            lambda = 2/sqrt(abs(dg_dR*dg_dalpha));                  % Adaptive lambda 
            sprintf('WARNING: Problem in convergence (Flat g-surface).... using 

adaptive lambda! lambda = %d', lambda), 
        elseif abs(dg_dR) > 100 | abs(dg_dalpha) > 100    %Steep g-surface  
            lambda = sqrt(abs(dg_dR*dg_dalpha))/2;                  % Adaptive lambda 
            sprintf('WARNING: Problem in convergence (Steep g-surface).... using 

adaptive lambda! lambda = %d', lambda), 
        else 
            newR = R - g/dg_dR; 
            newalpha = alpha - g/dg_dalpha; 
            if g*lastg < 0 
                R = (R + newR)/2; 
                alpha = (alpha + newalpha)/2; 
            elseif abs(g) < abs(lastg) 
                R = newR; 
                alpha = newalpha; 
            else 
                R = (R + newR)/2; 
                alpha = (alpha + newalpha)/2; 
                sprintf('WARNING: Suspecting local extreama'), 
            end 
            lambda = 1; 
        end 
         
        lastg = g; 
         
        iterNo = iterNo + 1; 
        if iterNo > 50 
            sprintf('ERROR: No convergence could be achieved in 50 iterations.... 

attempting once again afresh!\n'), 
            isConverge = 0; 
            break 
        end 
        sprintf('iterNo = %d  ,  g = %d', iterNo, g), 
    end 
     
    if isConverge == 1 
        Rs(ptNo) = R; 
        alphas(ptNo) = alpha; 
        ptNo = ptNo + 1; 
        sprintf('** Convergence achieved in %d iterations 

\n****************************************\n', iterNo), 
    end 
end 
 
save 'C:\Documents and Settings\Subhrajit.SELF-37D14AD783\My Documents\B.Tech 

Project\Matlab\Solution\zero_contour_randomSearch_20pts_high_precision.mat' Rs 
alphas; 

 
axis([0 log10(8000) 0 2.5]); 
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plot(log10(Rs), alphas,'.'); 
 
 
search_c.m: 
 
function [search_c] = search_c(R, alpha) 
% searches for c such that the boundary condition at y=0 is satisfied 
 
global phi0_wall phi0_p_wall phi0_pp_wall phi0_ppp_wall  % Values from First 

Integration Pass stored at the wall 
global phiW_wall phiW_p_wall phiW_pp_wall phiW_ppp_wall  % Values from First 

Integration Pass stored at the wall 
global dy phi0 phiW 
 
lambda= 0.5; 
c = 0 + 0i;    %Starting value for c 
delC = .1+.1i; 
 
loopcount = 0; 
while abs(delC) >= 1e-3 | abs(err) >= 1e-8, 
 
    solution_I(c, R, alpha) 
    solution_II(c, R, alpha) 
    err = phi0_wall.*phiW_p_wall - phi0_p_wall.*phiW_wall; 
 
    solution_I(c+delC, R, alpha) 
    solution_II(c+delC, R, alpha) 
    nxterr = phi0_wall.*phiW_p_wall - phi0_p_wall.*phiW_wall; 
 
    if abs(err) < 1e-10 
        break 
    end 
     
    if nxterr ~= err 
        delC = -lambda * delC / (nxterr/err - 1); 
    else 
        delC = delC * 4; 
    end 
    c = c + delC; 
    delC = .25*delC; 
     
    loopcount = loopcount + 1; 
    if loopcount > 100 
        break 
    end 
end 
 
search_c = c; 
 
yy = dy:dy:1; 
plot(yy, real(phi0 - phiW*phi0_wall/phiW_wall)); 
 
 
solution_I.m: 
 
function [solution_I] = solution_I(c, R, alpha) 
% Performs the first Integration Pass 
 
global phi0     % First Integration Pass Solution 
global phi0_p phi0_pp phi0_ppp    % Values from First Integration Pass stored at 

stations 
global phi0_wall phi0_p_wall phi0_pp_wall phi0_ppp_wall  % Values from First 

Integration Pass stored at the wall 
global A4_0     % Initial A4 value chosen for First Integration Pass 
global dy dyNos staGap 
 
 
p4 = -alpha .* sqrt(1 + i*R.*(1-c)./alpha); 
p4_expp4 = p4 .* exp(p4); 
p4sq = p4 .* p4; 
 
phi(1) = A4_0 * exp(p4); 
phi(2) = A4_0 * p4_expp4; 
phi(3) = A4_0 * p4 * p4_expp4; 
phi(4) = A4_0 * p4sq * p4_expp4; 
 
stationCount = 0; 
for stepNo = dyNos:-1:1, 
    phi0(stepNo) = phi(1); 
    if mod(stepNo, staGap) == 0     % A station has been reached!.... Storing values 
        stationCount = stationCount + 1; 
        phi0_p(stationCount) = phi(2); 
        phi0_pp(stationCount) = phi(3); 
        phi0_ppp(stationCount) = phi(4); 
    end 
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    phi = getNext_phi(phi, (stepNo-1)*dy, c, R, alpha); 
end 
 
phi0_wall = phi(1); 
phi0_p_wall = phi(2); 
phi0_pp_wall = phi(3); 
phi0_ppp_wall = phi(4); 
 
 
solution_II.m 
 
function [solution_II] = solution_II(c, R, alpha) 
% Performs the second Integration Pass 
 
global phiW     % Second Integration Pass Solution 
global A2_W     % Initial A2 value chosen for Second Integration Pass 
global phiW_wall phiW_p_wall phiW_pp_wall phiW_ppp_wall  % Values from First 

Integration Pass stored at the wall 
global dy dyNos staGap 
 
 
p2 = -alpha; 
p2_expp2 = p2 .* exp(p2); 
p2sq = p2 .* p2; 
 
phi(1) = A2_W * exp(p2); 
phi(2) = A2_W * p2_expp2; 
phi(3) = A2_W * p2 * p2_expp2; 
phi(4) = A2_W * p2sq * p2_expp2; 
 
for stepNo = dyNos:-1:1, 
    phiW(stepNo) = phi(1); 
    phi = getNext_phi(phi, (stepNo-1)*dy, c, R, alpha); 
end 
 
phiW_wall = phi(1); 
phiW_p_wall = phi(2); 
phiW_pp_wall = phi(3); 
phiW_ppp_wall = phi(4); 
 
 
getNext_phi.m 
 
function [getNext_phi] = getNext_phi(this_phi, y, c, R, alpha) 
% Returns the value of phi and it's derivetives in the next step of 
% Runge-Kutta iteration (i.e. at the previous value of y). 
% Here the 4 values are [phi phi_p phi_pp phi_ppp] 
global dy 
 
alphasq = alpha.*alpha; 
 
getNext_phi(1) = this_phi(1) - dy*this_phi(2); 
getNext_phi(2) = this_phi(2) - dy*this_phi(3); 
getNext_phi(3) = this_phi(3) - dy*this_phi(4); 
getNext_phi(4) = this_phi(4) - dy * (i*R.*alpha.*((U(y)-c).*(this_phi(3)-

alphasq.*this_phi(1)) - U_pp(y).*this_phi(1)) + 2*alphasq.*this_phi(3) - 
alphasq.*alphasq.*this_phi(1)); 
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