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ABSTRACT 
In this article mechanical waves propagating through a string restricted to move in a two-dimensional plane has been 
investigated and a wave equation of a more generalized form has been setup and some interesting observations have 
been made. 
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1. INTRODUCTION 
 
Disturbances produced in a string under tension can be described by wave equation. Here we 
deal with disturbances due to which the particles of the string move in a two-dimensional plane 
(a plane containing the undisturbed string and a line perpendicular to it). 
 
The wave equation formed with the assumption of i) vertical oscillation of particles of the string, 
ii) Poisson's ratio = 0 , iii) the oscillations are small, and iv) cross-sectional area and mass per 
unit length remains constant even when the string is deformed : is 
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In this paper we take the consideration of the following points to get a more generalized form of 
the wave equation: 
 
i) The particles of the string can perform motion in any direction on a two dimensional (x-y) 
plane. Thus we need a parametric equation to describe the shape of the string at an instant. 
(Unlike in standard wave equation where y can be expressed as a function of x). Hence, 
transverse waves (f1 = 0) and longitudinal waves (f2 = 0) can be unified to a pair of generalized 
wave equations 
 
ii) No assumptions of small oscillations are done. The oscillations can be of any magnitude. 
 
iii) The material has a particular Poisson's ratio 'p'. When disturbances propagate through the 
string different tensions exists at different parts of the string. Hence the cross-sectional area of 
the string changes. Thus the mass per unit length becomes different at different parts of the 
string. 
 
 
 
Notations: 
 

0µ  Mass per unit length of the un-stretched string, 
l Un-stretched length of the string, 
A0 Cross-sectional area of the un-stretched string, 
p Poisson’s ratio for the material, 
Y Young’s modulus for the material, 
i, j Unit vectors along X and Y directions. 
Bold letters denote vectors. 
All other mathematical symbols are in italics. 
 
List of captions for illustrations: 
 
1. fig-1: Path of motion of a particle initially at a distance ' e ' from one end of the un-stretched string of length ' l '. 
2. fig-2: Deformation and displacement of an element of un-stretched length 'de' due to forces. 
3. fig-3: Orientation of an element and moment due to forces acting on it. 
4. fig-4: Un-stretched string and stretched string with no disturbances propagating through them. 
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2. SETTING-UP A WAVE EQUATION 
 
2.1. Definitions for starting the problem: 
 
As a disturbance propagates through the string, the particles on the string perform motions. As 
shown in fig-1, the particle initially at a distance ' e ' from one end of the un-stretched string of 
length ' l ' performs motion along the shown path. 
 
 

 

 
fig-1 

 
The length of initial un-stretched string is ' l '. 
 
Definition of  ' e ':  A particle of the position ' e ' 
on the string is defined by the distance of the 
particle from one end of the un-stretched string. 
 
Let, Position of  ' e ' at time ' t '  = (x, y)  

                        = f(e, t) 
                                            = ( f1(e, t) , f2(e, t) ) 
Hence, 
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fig-2 

 
A differential element of length ' de ' on the un-
stretched string becomes element of length ' dl ' 
at the position (x, y) = (f1, f2) at a particular 
instant ' t '. 
 
Hence, at that instant, 
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Assuming the validity of Hook's Law, 
 
Stress on the element of un-stretched length ' de ' of position ' e ' at an instant ' t ' (i.e. element at 
(x, y) )  is, 
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[Using equation (2)]  
where, Y = Young's Modulus 
 
Let Poisson's ratio for the material be ' p '. 
If ' A0' is the uniform cross-sectional area of the un-stretched string, 
and the cross-sectional. area of the element of un-stretched length ' de ' of position ' e ' at time ' t ' 
is 'A', then, 
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 [Using equation (3)]  
 
 
2.2. Determination of tension in the element of un-stretched length ' de ' of position ' e ' at 
time ' t ': 
 
Tension vector T(e, t) as shown in fig-2 is given by, 
 

uT Aσ=      (5) 
where, u is the unit vector along T . 
 
We have already got expressions for A and σ in terms of e & t. Now we'll find u. 

     fig-3 
 
As shown in the above figure, T makes an angle Φ with the tangent at the point. 
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Considering moment of forces about the point C, 
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where, I = Mome  inertia = 1/3 dm. dl2,  
 and 
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ence Φ is a differential of order 2 (since the term 'dm dl' is present in the expression of sin Φ) 
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Therefore, we take Φ=0 for further calculations. i.e. we assume that T acts along the tangent o
the curve.  
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Now, substituting the expressions for σ, A and u from (3), (4) & (6) into the expression of T in 
(5), and doing some simplification, we get the expression for T as, 
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For ease of calculations the following substitutions are done, 
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Now differentiating T w.r.t. e we get, 
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            (8) 
 
 
2.3. Forming the wave equations: 
 
Please refer to fig - 2. 
 
We consider a small element of un-stretched length ' de ' of position ' e '. If  the mass per unit 
length of the un-stretched string be µ0, then mass of the element is       dm = µ0 de . 
 
Now, by Newton's Second Law, 

 av
=
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where, a  = acceleration of the centre of mass of the element 

    de
edm
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[ de
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∂T
Q   is the resultant force on the element at a particular instant (see fig-3)] 
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where, 
de
dm

=0µ  is the mass per unit length of the un-stretched string. 

 
 
 
Combining (8) & (9) we get the wave equation : 
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Note that this is a second order vector differential equation. Thus we actually obtain two second 
order differential equations in which the unknowns are the functions f1 and f2. These two 
functions completely define the motion of the particles on the string. 
Thus we attempt to solve for f1 and f2.  
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2.4. Boundary conditions: 
 
i )  Initial deformation of the string: 
 f1(e, 0) = Ω(e)  & f2(e, 0) = ψ(e) 
 
ii )  Initial velocity of the particles: 
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iii )  String of un-stretched length ' l ' if fixed at two ends at (0, 0) & (Lx, Ly) 
 i.e. for all t, 
 f1(0, t) = 0  & f2(0, t) = 0 
 f1(l, t) = Lx  & f2(l, t) = Ly
 
 
2.5. Assumptions made while forming the differential equations: 
 
i )  For the un-stretched string the mass per unit length( µ0 ) is constant. 
ii ) The cross-sectional area(A0) of the un-stretched string is constant. 
iii)  Hook's law is valid for the material in absolute terms,  

i.e. Y(young's modulus) = [T/A] / [ (lfinal - linitial)/linitial ] 
 
 
2.6. An attempt to simplify the pair of wave equations: 
 
Equation (10) can easily be discretized and solved numerically using the appropriate boundary 
conditions. However we try to further simplify the equation by making some approximations. 
 
Approximations made in order to bring the equation (10) close to the standard wave equation: 
 

 
fig-4 

 
i) Ly << Lx [ We can easily achieve it by choosing axis 
suitably] 
 
ii) f2 << f1 [We can make it possible by allowing only 
small oscillations] 
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Justifications behind approximations iii) & iv) : 
 
When Ly << Lx, and the oscillations are small, we can express f1 & f2 as, 
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With this approximation we get from equation (10) after some simplifications, 
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3. DISCUSSIONS AND CONCLUSIONS: 
 
 
1. We consider the special case when the elements of the string perform vertical oscillations (i.e. 
pure transverse waves). 
Hence we take  ,   where  k = Lekf ⋅=1 x / l 
 
Thus the governing wave equation becomes:  
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       [Since, x = k.e ] 
 
Hence we get, 
Velocity of transverse waves in the string is given by, 
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where, Tu = tension in the undisturbed string ≈ A0Y.(k - 1) 
 µ = mass per unit length of the stretched string = µ0 / k 
 
 
2. Now we consider the special case when the elements of the string perform horizontal 
oscillations (i.e. pure longitudinal waves). 
Hence we take,  f1 ≈ k. e,  where  k = Lx / l 
And,    f2 = 0 
Thus the governing wave equation becomes:  
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Hence we get, 
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where, 000 Aµρ =  = density of the material of the string in it’s un-stretched condition. 
 
With k = 1, the values for velocities match exactly with the standard ones. 
 
 
3. We notice that there is a ± sign in equation (10) [or (11)]. 
But taking the negative sign gives imaginary values of velocity of waves, provided Tu is positive. 
i.e. there is tension in the string. 
However for negative Tu, i.e. compression, we need to take the negative sign in order to get a real 
velocity of the wave. 
In fact, the origin of the ± sign is from the expression of T in equation (8). The two states 
represent tension and compression. 
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