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1 Introduction 
 
Rotating discs and similar rotating objects appear in various practical problems in 
engineering applications. These include rotating shafts, disk clutches, cams, turbine 
blades, etc. One such specific and rather recent application is rotating data storage 
devices in computers. Such storage devices, like hard disks and compact disks, 
generally have to undergo extreme conditions of stresses at extremely high rotation 
speeds. These speeds typically assume orders of few thousand rotations per minutes. 
On the other hand with high precision operations in progress and highly sensitive 
components being present near the rotating disc (e.g. the reading and writing heads), 
high amplitude of vibrations of the disk cannot be tolerated. The problem takes 
critical turn when the frequency of rotation of the disc matches with the natural 
frequencies of vibration of the disc. At these critical frequencies even the slightest of 
eccentricity in the disk or vibration matching the frequency of rotation of the disk may 
cause resonance and uncontrollable vibrations in the disk. This situations need to be 
avoided. One of the approaches to avoid such a situation is to design the disk in such a 
way so that the natural frequencies of vibration of the disk are increased considerably. 
Consequently the permeable range of angular rotation of the disk will be much wider. 
But the material of the disk needs to be chosen suitably so that it can hold the data 
layer on its surface satisfactorily. This often prevents the choice of a material with 
high yield strength which could have pushed up the critical frequencies for the disk. 
Hence an investigation into the problem seeking alternative ways for strengthening 
the disk without altering much of its dimensions and material properties and result in 
an increased critical frequency is highly desirable. The present project work deals 
with the problem of increasing the natural frequencies and hence the critical 
frequencies of the disk by inserting thin stiffeners into the disk. Introduction of such 
stiffeners of higher strength and rigidity though does not affect the properties and 
performance of the disk reasonably, according to the present analysis it is found that 
they have successfully increased the natural frequencies of the disk, both in static as 
well as rotating conditions. 
In the present work some analytical treatment of the problem along with some FEM 
simulation of modal vibration of rotating disks with stiffeners has been made. The 
addition of radial stiffeners of various shapes showed satisfactory improvement in the 
results. Along with these some interesting observations have been made regarding the 
modal shapes on addition of stiffeners. 
 
 
2 Previous Works 
 
The problem of vibrations of disk is not a new one. It finds it place well in various 
text books dealing with vibration of structures. Timoshenko [1] has given a detailed 
analysis of vibration of plates in Cartesian Coordinates. The results have also been 
obtained in Polar Coordinates by suitable coordinate transformation. However the 
analysis has been done for the case when the material of the plate is homogeneous and 
is uniform throughout the solution region. That is, the values of density, Young’s 
modulus and Poisson’s ratio remains constant at every point in the solution domain. 
With these assumptions the governing differential equation for deflection of a plate 
under static load is in general given by, 

D
qw =∆∆       (1) 

where, w = deflection in normal direction, 
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 in Cylindrical Polar coordinates. 

A series solution of the differential equation has also been provided in [1]. 
 
However the simple form of the equation (1) is radically disturbed once it is assumed 
that the material properties are functions of space. In fact if stiffeners are inserted into 
the disk, the material properties can no longer be regarded constant. Under such 
circumstances the whole analysis needs to be repeated with E, ν and hence, D as 
functions of the space variables. 
Moreover in equation (1) no pre-stressed effects have been considered that may be 
caused due to the centripetal forces that act on the different parts of a rotating disk. 
Hence for an analysis of the present problem the pre-stress effects due to rotation need 
to be considered. 
As the present problem deals with circular disk-like plates which are rotating about 
their axis, it is desirable to obtain the equations in cylindrical polar coordinates. 
Hence unlike in Timoshenko [1], where the original analysis in Cartesian coordinates 
have been later transformed to cylindrical polar coordinates, the present approach to 
the problem has been done in the cylindrical polar coordinates from the very 
beginning. 
 
 
3 The Present Analysis 
 
In the present analysis we deal with only the out of plane modes of vibration of the 
plate/disk. Hence we have only one displacement variable, w, which denotes the 
vertical displacement of a point on the disk from its un-displaced position. Here w is a 
function of r, θ and t, where r & θ are the space variables in cylindrical polar 
coordinates and t is the time. 
As we are interested in finding out the natural modes of vibration, we assume that w 
is a simple harmonic function of time with the same frequency and phase but varying 
amplitudes for all the points on the disk. That is, 

ti nerutrw ωθθ ⋅= ),(),,(      (2) 
where, ωn is the frequency of the particular natural mode of vibration. 
 
 
3.1 Moments on an elemental portion of the disk 
 
We start with the expression for bending and twisting moments on an element of the 
disk. The expressions for moments per unit length have been given by Timoshenko 
[1] for any orthogonal coordinate system. We have extended the expression for 
cylindrical polar coordinates. The bending moments per unit length are given by, 
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where, ρr and ρθ are the radii of curvature along a radial line and tangent respectively 
and are given by, 
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And the twisting moment per unit length is given by, 
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and, rr MM θθ −=  
Here it may be noted that E, ν, and hence D are functions of r and θ. 
 
The following figure shows the moment vectors due to the above acting on an 
elemental portion of the disk. It may be noted here that the notations used by 
Timoshenko for Mr and Mθ have been interchanged in the present analysis. 

 
fig – 1 

 
3.2 Shear stresses 
 
Now, figure 2 shows the direction of the shear stresses acting on the element which 
contribute to the moments along er and eθ directions. 

 
fig – 2 
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As the moment of inertia of the element about any axis (er or eθ) embedded on it is a 
differential of order 4, the rotation of the element about the axes can be neglected. 
Hence we consider equilibrium of the bending & twisting moments and the moments 
due to the shear forces on the element. 
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And, considering moment about eθ, 
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3.3 Components of Radial and Circumferential stresses due to rotation of the disk 
 
If we consider the disk to be pre-stressed, there will be normal stresses along er and 
eθ. As the element has a curvature both along er and eθ directions, there will be 
components of forces due to σr and σθ along ez (figure 3). 

 
fig - 3 

 
On performing a simple analysis, it can be shown that the components of the forces 
due to radial and circumferential stresses along -ez are respectively given by, 
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For a disk with ri and ro as internal and external radii respectively and fixed at the 
inner circumference (as in the present case) and rotating with angular frequency ω, the 
radial and circumferential stresses are given by, 
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3.4 The final equation of motion 
 
Hence, the net force on the element along ez due to the τrz, τθz, σr and σθ causes it to 
accelerate along ez. Hence, the final equation of motion is given by, 
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where, ρ is the density of the material and is a function of r and θ. 
 
This gives, 
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Now, putting in (10) the expression for w in terms of u and ωn from (2), and 
performing all the calculations and simplifications using Mathematica 5.1 the 
following differential equation was obtained, 
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The notations used here are as follows: 

ri ≡ ri, ro ≡ ro, νθν ≡],[r , ρθρ ≡],[r , ed[r,θ] ≡ ( )2
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The above result was cross-checked by putting constant values of D, ρ and ν . It gave 
back the results as in [1] for disk with constant material properties. 
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The non-trivial solutions to this partial differential equation in r and θ with 
appropriate boundary conditions give the modal shapes of the rotating disk with 
inhomogeneous material properties like stiffeners, etc. And the corresponding ωn’s 
gives the natural frequencies. 
 
 
3.5 Possibilities of solution 
 
As it can be seen, the obtained differential equation is a pretty huge one and is 
difficult to handle analytically without any suitable approximations. Attempts were 
made to reduce the partial differential equation to ordinary ones using separation of 
variable method. The substitution u(r,θ) = u1(r).u2(θ) was done, but without much 
simplification or separation of the variable r and θ. However there are possibilities of 
further investigation into the equation and solving it analytically using suitable 
methods. 
However, as the present problem deals mainly with radial stiffeners (figure 4), a 
possible simplification of the equation may be performed by assuming that the 
properties like D, ρ and ν  are functions of θ only. 

 
fig - 4 

 
Moreover if we assume the stiffeners to be very thin and having drastically different 
material property values compared to that of the disk itself, the property functions D, 
ρ and ν  may be approximated by a Dirac Delta function as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −∏⋅+=

−= n
kr

n

nk
stiffnerdisk

πθδξξθξ 2),( , 

where, ξ is any property of the material integrated over length, 
 n = number of equispaced stiffeners on the disk. 
It may be noted that the domain of θ in which all the analysis are done is assumed to 
be [-2π, 2π]. 
 
 
4 Finite Element Analysis 
 
The above partial differential equation can be attempted to be solved using suitable 
numerical techniques. However as a part of the present work, the numerical solutions 
have been performed using the FEM software Ansys. The description of the 
geometry, material properties, boundary conditions, grid type used, meshing and 
mode extraction method used are given below. All the values mentioned here are in SI 
unit system. 
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4.1 Geometry of the Disk 
 
The disk was basically a thin annular cylinder with 
internal radius(ri) = 0.01, external radius(ro) = 0.051, thickness(h) = 0.001. 
The geometry and number of the stiffeners were varied and different sets of results 
were obtained for each of them. 
 
 
4.2 Material Properties 
 
The material of the disk is considered to be a type of plastic polymer, and the 
stiffeners were assumed to be made of steel. Hence the material property values were 
chosen accordingly. 
The material of the disk was chosen to have the following properties: 
E = 40×109, ρ = 2000, ν  = 0.25 
And the material of the stiffener was chosen to have the following properties: 
E = 200×109, ρ = 7800, ν  = 0.3 
 
 
4.3 Boundary Conditions 

 
fig - 5 

The boundary condition was set so as to ensure that the disk is clamped at it’s inner 
circumference. In order to ensure that, the surface area of the inner cylinder of the 
disk was declared to have zero displacement along all the three degrees of freedom. 
 
 
4.4 Grid type, meshing and mode extraction technique 
 
For meshing the volume of the disk, the 20-nodes solid element ‘SOLID95’ provided 
in Ansys was chosen. The particular choice was made because the SOLID95 element 
can tolerate irregular shapes without much loss of accuracy and the elements have 
compatible displacement shapes and are well suited to model curved boundaries. 
Hence for the present problem dealing with thin circular disk, this element was found 
to be most suitable. 
The meshing of both the disk and the stiffener volumes were done using unstructured 
grids. For the purpose of controlling the size of the elements Ansys’s ‘Smart Size’ 
tool was used. For the volumes of the disk, the size level was set to 7 and for the 
stiffeners the size level was set to 6. 
For each case, first a static analysis was performed with the prestressed effect on and 
with an angular velocity of the global coordinated about z-axis to account for the 
rotation of the disk. It was followed by a modal analysis with the previously obtained 
prestress data. For the modal analysis, the method used for extraction of the 
eigenvalues is Block Lanczos. 
 
The following section describes the geometry, position and number of stiffeners used 
and the corresponding results obtained in each case. 
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5 Results 
 
The standard mode shapes for disk without stiffeners and clamped at the inner 
circumference consists of nodal circumferences and nodal diameters. A mode shape 
with i nodal diameters and j nodal circles is termed as mode (i, j). The following 
figures show some typical mode shapes (the lines represent the nodes): 

     
(0, 0)    (1, 0)    (2, 0) 

                 
(0, 1)    (1, 1)    (2, 1) 

 
fig – 6 
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5.1 Disk with no stiffeners 
 
Modes obtained: First 20 modes were extracted, and the modal shapes obtained were 
the standard ones. A plot of the modal frequencies against the angular velocity of the 
disk is performed. The intersections of the straight lines with slopes 2, 3, etc with 
curves corresponding to modes (1,0), (2,0), etc give the critical frequencies. The 
following graph shows the plot for only the first 5 modes: 
 

 
It was observed that the slope 1 line almost became asymptotic to the mode (0,0) 
curve. This is a result expected from the standard calculations for disk with no 
stiffeners.
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5.2 Disk with three straight equispaced radial stiffeners 
 
 
Stiffener Geometry: The stiffeners are simple thin rectangular parallelopipeds with 
length ro-ri = 0.041 and both height and thickness = h = 0.001. 
 
Modes obtained: The mode shapes obtained were same as before, but for all the 
modes (i, j) with i as multiple of 3, the frequencies of the orthogonal modes got 
splitted. The splitted modes are denoted by ‘A’ for the modes which have stiffeners 
on antinodes and ‘B’ for the modes which have stiffeners on modal diameters. 

 
fig – 7 : A typical (3, 0) mode 

 
 
Again, the plot of modal frequencies against the angular velocity was made. 
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5.3 Disk with four straight equispaced radial stiffeners 
 
 
Stiffener Geometry: Same as section 5.2. 
 
Modes obtained: Mode shapes obtained were same as before, but splitting of 
orthogonal modes was observed for modes with nodal diameters multiples of 4. 
 

 
 
It may be observed here that till now there has not been any significant change in the 
critical angular velocities because of addition of stiffeners to the disk. Hence an 
investigation by altering the geometry of the stiffeners may be done to see if the 
critical angular velocities go up. 
The following sections show the results obtained by altering the stiffener geometries. 
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5.4 Disk with three expanding (narrower near the inner circumference, wider near the 
outer circumference) equispaced radial stiffeners 
 
 
Stiffener Geometry: The stiffeners are trapezoidal shaped thin blocks with width of 
0.0004 at the inner circumference and 0.002 at the outer circumference. 
The thickness is uniform thought and is equal to h = 0.001. 
 
On starting the analysis with zero angular velocity of the disk, it was found that the 
modal frequencies, and hence the critical speeds decreased considerably compared to 
the straight stiffeners case. This as the undesired case, hence further continuation of 
analysis with this geometry of stiffener was discontinued. 
However it was clear from the above mentioned observation that an increased mass 
concentration near the outer circumference is not desirable. Hence it may be 
interesting to do some study with stiffeners having higher mass concentration near the 
inner circumference. 
 
 



5.5 Disk with three contracting  (wider near the inner circumference, narrower near 
the outer circumference) equispaced radial stiffeners 
 
 
Stiffener Geometry: As in 5.4, the stiffeners are the same trapezoidal shaped thin 
blocks, but they are now placed in a reverse orientation. That is, they have a width of 
0.0004 at the outer circumference and 0.002 at the inner circumference. 
The thickness is uniform thought and is equal to h = 0.001. 
 
Modes obtained: Mode shapes obtained were similar to 5.2, with splitted orthogonal 
modes for modes with nodal diameters multiples of 3. However in this case, a few 
modes were found to be slightly deformed from the standard mode shapes. 
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5.6 Intermediate Conclusions for proceeding with further modifications on the 
stiffener geometry 
 
 
Though not very evident from the previous graphs, there had been a minor increase in 
the critical frequencies with contracting stiffeners when compared with the previous 
ones. A close comparative study of the frequencies of mode (1, 0) and its intersection 
with slope 2 line may reveal the fact. 

The above graph reveals: 
 With addition of stiffeners, the lowest critical velocity has gone up slightly. 
 By increasing the number of stiffeners from 3 to 4 not much difference id 

made on the critical velocities. 
 By increasing the mass concentration of the stiffeners near the inner 

circumference there has been some increase in the critical velocity. 
 However, in all the above mentioned cases the value of the first critical 

angular velocity lies within the value 1500 (± 50) rad/s. Hence nothing much 
has yet been achieved. Hence further investigation is required 

 
From the above drawn conclusions it was logical to investigate the problem with 
stiffeners having even higher mass concentration near the inner circumference. The 
following section deals with such a stiffener geometry, which is a modification on the 
contracting stiffener, and was found to give much better results. 
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5.7 Disk with three raised, contracting (raised above the surface of the disk and wider 
near the inner circumference) equispaced radial stiffeners 
 
 
Stiffener Geometry: The stiffeners are the similar to those of section 5.5, but they are 
now also raised above the surface of the disk near the inner circumference and 
gradually slopes down to meet the disk surface at the outer circumference. Hence, 
they are a sort of truncated pyramidal shaped stiffeners with the base of the pyramid 
at the inner circumference, and apex at the outer circumference. 
At the inner circumference they have a width of 0.002 and thickness of 0.00512. 
And at the outer circumference they have a width of 0.0004 and thickness of 0.001. 
Thus the geometry appears something as shown below (figure not to the scale): 

 
fig – 8 

 
Modes obtained: In this case the mode shapes obtained were rather very interesting. 
Apart from a few standard higher mode shapes (like (4,0), (5,0), (6,0) and (3,1)), a 
few new types of modes were obtained, some of which were much deformed an 
asymmetric. 
It was interesting to observe that the standard modes with the lower modal 
frequencies were completely replaced by new modes with much higher modal 
frequencies. Hence the first few critical speeds of the disk were expected to increase 
considerably. 
 
The results obtained follows. 
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As only a few of the standard modes were available, they are shown in the following 
graph: 

 
But it will be of greater interest to make a study on the new mode shapes obtained 
with the present stiffener geometry. The following figures show some of those mode 
shapes: 
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fig – 9 : Unusual mode shapes obtained 

 
 
As most of the standard (i, j) modes are absent with the present stiffener geometry, we 
will term the modes mode-1, mode-2, etc. in ascending order of their modal 
frequencies. For the purpose of comparison with the other stiffener geometries the 
modal frequency vs. angular velocity graphs were plotted for the different stiffeners 
for mode-1, mode-2 and mode-3. 
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From the above graphs it can easily be seen how the 3 contracting and raised 
stiffeners used in this section have increased the modal frequencies for the disk 
substantially. 
However, as many of the standard modes were absent, it is difficult to draw any 
immediate conclusions regarding the critical speed of the disk. But as the modal 
frequencies were found to increase considerably, one can logically expect the critical 
velocities to increase accordingly. 
Hence the raised contracting stiffener gave extremely desirable results by increasing 
the modal frequencies. Even if we keep some allowance in these results in order to 
account for the numerical errors caused due to difference in meshing, the results show 
a high potential for the success of the stiffener geometry mentioned in 5.5. 
 
However some of the mode shapes obtained in the simulation of 5.5 were highly 
deformed and asymmetric. This may be because of numerical errors caused by uneven 
meshing, limitations of the mode extraction and solving methods used, etc. Further 
investigation is possible in order to explain these anomalous modal shapes. 
 
 
6 Conclusions 
 
The final conclusions that can be drawn from the above analysis and results: 
 

 An analytical solution has been attempted in order to account for variation of 
material properties within the disk, which is in fact the case for disks with 
stiffeners. A differential equation has been successfully set up and cross-checked 
by putting constant values of material properties to obtain the equation in [1]. 
However a final solution could not be achieved at the present moment due to the 
complexity of the differential equation. Further studies on the obtained partial 
differential equation with appropriate approximations may lead to a satisfactory 
analytical solution. 

 
 Using the FEM software Ansys, modal analysis of the rotating disk with stiffeners 

of different geometries were performed. A gradual development of the stiffener 
geometries on the basis of conclusions drawn from intermediate results finally 
yielded a stiffener which could successfully push up the modal frequencies, and 
hence potentially increase the critical speeds of the disk. 

 
 Further investigation into the problem may result in a successful analytical 

method for dealing with such disks with stiffeners. Moreover variation in the 
dimensions and geometry of the obtained stiffener may yield better and interesting 
results. 
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